Homework \#5
Math 527, UNH spring 2015
Due Tuesday, February 24th in recitation
Same instructions as usual regarding writing your name, section number, etc.
Problems 1-6. Find the general solution. If initial conditions are given, also solve the initial value problem. The "prime" notation indicates differentiation: $y^{\prime}=d y / d t$, etc.

1. $y^{\prime \prime}-3 y^{\prime}+y=0$
2. $2 y^{\prime \prime}+3 y^{\prime}+4 y=0$
3. $4 y^{\prime \prime}-12 y^{\prime}+9 y=0$
4. $\quad 9 y^{\prime \prime}+6 y^{\prime}+y=0 ; \quad y(0)=1, y^{\prime}(0)=0$
5. $\quad 5 y^{\prime \prime}+5 y^{\prime}-y=0 ; \quad y(0)=0, y^{\prime}(0)=1$
6. $y^{\prime \prime}+2 y^{\prime}+5 y=0 ; \quad y(0)=0, y^{\prime}(0)=2$

Problem 7.

(a) Show that $y_{1}(t)=e^{i \omega t}$ and $y_{2}(t)=e^{-i \omega t}$ are linearly independent complex-valued solutions of the ODE $y^{\prime \prime}+\omega^{2} y=0$.
(b) Let

$$
\begin{aligned}
& \hat{y}_{1}(t)=a_{1} y_{1}(t)+a_{2} y_{2}(t) \\
& \hat{y}_{2}(t)=b_{1} y_{1}(t)+b_{2} y_{2}(t)
\end{aligned}
$$

Find complex-valued constants $a_{1}, a_{2}, b_{1}, b_{2}$ such that $\hat{y}_{1}(t)=\cos \omega t$ and $\hat{y}_{2}(t)=\sin \omega t$.
(c) Show that $\hat{y}_{1}(t)=\cos \omega t$ and $\hat{y}_{2}(t)=\sin \omega t$ are also linearly independent solutions of the ODE.
(d) Express the general solution of the ODE in terms of the real-valued solutions $\hat{y}_{1}(t)=$ $\cos \omega t$ and $\hat{y}_{2}(t)=\sin \omega t$.

Problem 8. Use Euler's formula $e^{i x}=\cos x+i \sin x$ to show that $(\cos x+i \sin x)^{n}=$ $\cos n x+i \sin n x$, and then use this result to obtain the double-angle formulae $\sin 2 x=$ $2 \sin x \cos x$ and $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.

Problem 9. Find the general solution to the following ODE, using the ansatz $y(t)=e^{\lambda t}$ and reduction of order.

$$
t \frac{d^{2} y}{d t^{2}}-(1+3 t) \frac{d y}{d t}+3 y=0
$$

Problem 10. Find two linearly independent solutions of

$$
t^{2} \frac{d^{2} y}{d t^{2}}+5 t \frac{d y}{d t}-5 y=0
$$

using the ansatz $y(t)=t^{\lambda}$.

