Homework #3

Math 527, UNH spring 2015

Due Tuesday, February 10th in recitation

Instructions, same as usual: Solve the problems, simplifying the solution as much as you can. AWE: Always Write Equations, and ADTSTTBSOTE: Always Do The Same Thing To Both Sides Of The Equation. Your work should be legible, organized, and written on loose-leaf paper. Staple the pages together in the upper left-hand corner. Write your name, "Math 527, section #" and "HW 3" in the upper-right corner.

Problems 1-7. Determine if the differential equation is exact. If it is exact, solve it.

$$1. \quad 2x - 1 + (3y + 7)\frac{dy}{dx} = 0$$

2.
$$2x + y - (x + 6y)\frac{dy}{dx} = 0$$

3.
$$5x + 4y + (4x - 8y^3)\frac{dy}{dx} = 0$$

4.
$$\sin y - y \sin x + (\cos x + x \cos y - y) \frac{dy}{dx} = 0$$

5.
$$x^2 - y^2 + (x^2 - 2xy)\frac{dy}{dx} = 0$$

6.
$$x^2y^3 - \frac{1}{1+9x^2} + x^3y^2\frac{dy}{dx} = 0$$

7.
$$2y \sin x \cos x - y + 2y^2 e^{xy^2} = (x - \sin^2 x - 4xy e^{xy^2}) \frac{dy}{dx}$$

8.
$$t\frac{dy}{dt} = 2te^t - y + 6t^2$$

Problems 9 and 10. Solve the initial-value problem.

8.
$$(x+y)^2 + (2xy + x^2 - 1)\frac{dy}{dx} = 0$$
, $y(1) = 1$

9.
$$e^x + y + (2 + x + ye^y)\frac{dy}{dx} = 0$$
, $y(0) = 1$

These problems are from Zill textbook exercises 2.4, sometimes in slightly different form.