Sample exam #1 Feb. 26, 2015 Math 445, University of New Hampshire Name: John Gibson

1. Given a vector v, write one line of Matlab code that returns its 1st, 2nd, and 9th elements.

2. Given a 3×5 matrix A, write one line of Matlab code that sets its third colum to a vector with elements 5, 7, and 2.

$$A(:,3) = [5;7;2]$$

3. Write one line of Matlab code that creates an anonymous function that computes the value of the polynomial $4x^3 + 3x^2 - 2x - 7$ for an input argument x.

4. How would you use Matlab and the anonymous function from problem 3 to find a numerical solution to the equation $4x^3 + 3x^2 - 2x - 7 = 0$? One line of code should do it.

5. Write a few lines of Matlab code that would plot $y = e^{-4x} \sin(2x)$ versus x for $-2 \le x \le 2$ as a green line with a superimposed grid. Label your axes.

6. Write one line of Matlab code that evaluates to 1 (true) if x is less than 4 and y greater than or equal to 6, and 0 (false) otherwise.

7. Write a few lines of Matlab code that would evaluate the following sum for the value $x = \pi/6$.

$$\sum_{n=0}^{20} (-1)^n \frac{x^{2n}}{(2n)!}$$

$$N = 0:20;$$

$$X = pi/6;$$

$$Sum ((-1).^n .* × .^(2*n) ./ factorial (2*n))$$

8. Write Matlab code that would solve the system of equations.

$$3x + y + 2z - 6 = 0$$

$$9z - x - 8 = 0$$

$$5y - 4x - 1 = 0$$

$$3x + y + 2z = 6$$

$$-x + 9z = 8$$

$$-4x + 5y = 1$$

$$A = [3 \ 1 \ 2; -1 \ 0 \ 9; -4 \ 5 \ 0]$$
 $b = [6; 8; 1]$
 $A \setminus b$

9. Write a Matlab function that computes the mean (i.e. average) of the components of a vector x according to the formula

$$\operatorname{mean}(x) = \frac{1}{N} \sum_{i=1}^{N} x_i$$

where N is the length of the vector. Your function should evaluate this sum directly using a for loop, not by calling Matlab's sum or mean function.

function
$$M = mean(x);$$

yo compute mean of components of input vector x
 $N = length(x);$
 $M = 0;$

for $i = 1:N$
 $M = m + x(i);$

and

 $M = m/N;$

10. What is y as a function of x? Give an explicit formula for y(x) with specific numerical constants.

rise = -1 (exponent)

Value = -1 (exponent)

Where
$$M = \frac{V | SC}{V | UN} = \frac{-1}{2}$$
 $\log y = -\frac{1}{3} \log x + b$
 $V = \log x + b$