Homework \#7
Math 527, UNH spring 2014
Due Tuesday, Apr. 22 in recitation.
Note: Problems 1 and 2 are warm-up/review problems for power series.
Problem 1: Find the power series expansions of $\sin x$ and $\cos x$ about $x=0$ by using the Taylor expansion

$$
f(x)=\left.\sum_{n=0}^{\infty} \frac{1}{n!} \frac{d^{n} f}{d x^{n}}\right|_{x=0} x^{n}
$$

That is, plug $f(x)=\sin x$ into the above equation and evaluate the derivatives to derive a power series expansion of $\sin x$. Then do the same for $\cos x$.

Problem 2: Use the power series expansions of $\sin x$ and $\cos x$ to show that

$$
\frac{d}{d x} \sin x=\cos x
$$

That is, differentiate the power series of $\sin x$ and show it equals the power series of $\cos x$.
Problem 3: Find the general solution of the ODE using the ansatz $y=e^{\lambda x}$, and then find it again using the power series method.

$$
y^{\prime \prime}+k^{2} y=0
$$

Problem 4: Find two linearly independent power-series solutions of the ODE, centered about $x=0$. If the power series does not simplify to a known function or have a simple expression for the coefficients, provide the first four terms of each solution.

$$
y^{\prime \prime}+x^{2} y^{\prime}+x y=0
$$

Problem 5: Use the power series method to solve the initial value problem and specify the solution's interval of convergence (Zill 6.1 problem 29).

$$
(x-1) y^{\prime \prime}-x y^{\prime}+y=0, \quad y(0)=-2, \quad y^{\prime}(0)=6
$$

