Homework #5: Laplace transforms Due Thursday, March 27th in recitation

Math 527, UNH spring 2014

Problem 1. Find the Laplace transform of $F(s) = \mathcal{L}\{f(t)\}$ using algebra, linearity, trig identities, s-translation, and table-lookup.

(a)
$$f(t) = 4t^2 - 5\sin 3t$$

(b)
$$f(t) = (1 + e^{5t})^2$$

$$\mathbf{(c)} \quad f(t) = t^2 e^{-3t}$$

$$(\mathbf{d}) \quad f(t) = \sin(3t + 2)$$

Problem 2. Find the inverse Laplace transform $f(t) = \mathcal{L}^{-1}\{F(s)\}$ using linearity, partial fractions, complete-the-square, s-translation, and table look-up.

$$\mathbf{(a)} \quad F(s) = \frac{1}{s^7}$$

(b)
$$F(s) = \frac{(s+1)^2}{s^3}$$

(c)
$$F(s) = \frac{s+1}{s^2+2}$$

(d)
$$F(s) = \frac{10s}{s^2 - 16}$$

(e)
$$F(s) = \frac{2s-4}{(s^2+s)(s^2+1)}$$

(**f**)
$$F(s) = \frac{s}{s^2 + 2s + 5}$$

Problem 3. The hyperbolic functions $\sinh x$ and $\cosh x$ are defined as

$$sinh x = \frac{e^x - e^{-x}}{2} \qquad cosh x = \frac{e^x + e^{-x}}{2}.$$

Use these definitions to find the Laplace transforms of $\sinh kx$ and $\cosh kx$.

Problem 4. Derive the Laplace transform of t^n for positive integer n. To do this, show that $\mathcal{L}\{1\} = \frac{1}{s}$ and that $\mathcal{L}\{t^n\} = \frac{n}{s} \mathcal{L}\{t^{n-1}\}$. Put these together to find $\mathcal{L}\{t\}$, $\mathcal{L}\{t^2\}$, $\mathcal{L}\{t^3\}$, and then generalize to get $\mathcal{L}\{t^n\}$.

Problem 5. Solve the initial value problems using Laplace transforms

(a)
$$y' - y = 2\cos 5t$$
, $y(0) = 0$

(b)
$$y'' + 2y' + y = 0$$
, $y(0) = 1$, $y'(0) = 2$

(c)
$$y'' - 6y' + 9y = t$$
, $y(0) = 0$, $y'(0) = 1$