Math 527 - Homework 1 Solutions

Find the general solution of these separable ODEs. If an initial value is provided, also solve the

initial value problem.
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Integrate both sides with respect to t¢.

Exponentiate both sides.
(1 is an arbitrary constant.

Let Cy = €1 (s0 Cy > 0).

Consider y(t) = —1. It is easy to verify that this is also a solution to the ODE.
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Integrate both sides with respect to x.

(1 is an arbitrary constant.
Let Cy = —C1 (so Cy is also arbitrary).

Take the natural logarithm of both sides.
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y? =2In(1 + ) + Cy Let Cy = 2C) (so Cy is also arbitrary).

y = +/2In(1 + 2) + Cy.

Plugging in the initial condition to solve for Cs, we get
3=+42In5+ Cy
9=2In5+Cy

Cy=9-—2Inb.

Given that the y-value for our initial condition is positive, we omit £ in our answer. Therefore,
our solution to the IVP is

y=+/2In(1+12)+9—2In5
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Solution.
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/(Qy - 2)d—y dx = /(3x2 +4x 4+ 2) dx Integrate both sides with respect to x.
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y?— 2y =23 + 222 + 22+ C (' is an arbitrary constant.

y2 —2y+1= 3+ 222 + 22 + Oy Complete the square; let Co = Cp + 1.

(y—1)2 =23 +222 + 22+ Cy

y—1=+23+ 222+ 2z + Cs

y=1++/23+ 222+ 2z + Co.

Plugging in the initial condition to solve for Cs, we get

—1=1++/Cy
—2 =20y
4 =Ch.

Given that the y-value for our initial condition is negative, we replace + with a minus sign
in our answer. Therefore, our solution to the IVP is

y=1— 23+ 222+ 2z + 4. O
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Solution.
dy : :
cot V= cott For siny # 0, sint # 0.
dy : :
cot ya dy = [ cottdt Integrate both sides with respect to ¢.
/cotydy = /cottdt
In(siny) = In(sint) + C; (' is an arbitrary constant.
siny = eGin)+ Exponentiate both sides.
Siny — 601 6lIl(Sin t)
siny = Cysint Let Oy = e (so Cy > 0).

= sin” ! (Cysint).
Y

Consider siny = 0. Solutions to this equation are functions of the form y(t) = k7w, where k is
an integer. It it easy to verify that these functions also satisfy the ODE. O



Find the general solution of these 1st order linear ODEs. If an initial value is provided, also

solve the initial value problem.
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Solution. Let p(t) = cost. Then our integrating factor is

N(t) _ efcostdt _ esint.

Multiplying both sides of the ODE by u(t), we get:
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d .
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d sin ¢ . .
T (ye ) dt = [ 0dt Integrate both sides with respect to t.
yesnt = C C is an arbitrary constant.

y = Ce St O



dy
7. 22 oty =t, y(0)=1
0 y=t, y(0)

Solution. Let p(t) = —2t. Then our integrating factor is

2

u(t) = e —2tdt _ 7

Multiplying both sides of the ODE by u(t), we get:
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Plugging in the initial condition to solve for C', we get

1
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Therefore, our solution to the IVP is
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Solution. Let p(z) = o2
x
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Multiplying both sides of the ODE by u(z), we get:
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y(l+2*) =z +C C' is an arbitrary constant.
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Solution. Let p(t) = 1. Then our integrating factor is

u(t) = el # =t

Multiplying both sides of the ODE by u(t), we get:
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Integrate both sides with respect to ¢.

C' is an arbitrary constant.
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Solution. We start by dividing both sides of the equation by x to put this first order linear
ODE into “standard” form:

dy 1 .
—~ — —y=uzsinz.
de =« Y

Let p(z) = —%. Then our integrating factor is

M(ﬂf) _ ef—l/xdx — oIz _
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Multiplying both sides of the “standard” form ODE by u(x), we get:
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. y— | de = [ sinxdx Integrate both sides with respect to x.
x x
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y—=—cosx+C C' is an arbitrary constant.
x
y=—xcosz+ Cu. O
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