Homework \#5

Math 527, UNH fall 2015

Due Thursday, October 8th in recitation

Same instructions as usual regarding writing your name, section number, etc.
Problems 1-6. Find the general solution. If initial conditions are given, also solve the initial value problem. The "prime" notation indicates differentiation: $y^{\prime}=d y / d t$, etc.

1. $6 y^{\prime \prime}-7 y^{\prime}+y=0$
2. $y^{\prime \prime}+2 y^{\prime}+3 y=0$
3. $y^{\prime \prime}-6 y^{\prime}+9 y=0$
4. $\quad 2 y^{\prime \prime}+y^{\prime}-10 y=0 ; \quad y(1)=5, y^{\prime}(1)=2$
5. $4 y^{\prime \prime}-4 y^{\prime}+y=0 ; \quad y(0)=0, y^{\prime}(0)=3$
6. $y^{\prime \prime}+y^{\prime}+2 y=0 ; \quad y(0)=1, y^{\prime}(0)=-2$

Problem 7. Consider the the initial value problem

$$
y^{\prime \prime}+9 y=0 ; \quad y(0)=2, y^{\prime}(0)=-3 / 2 .
$$

(a) Express the general solution of $y^{\prime \prime}+9 y=0$ in terms of sines and cosines.
(b) Find the constants in (a) that satisfy $y(0)=2, y^{\prime}(0)=-3 / 2$, and then use those constants to find the solution of the initial value problem.
(c) Express the general solution of $y^{\prime \prime}+9 y=0$ in terms of complex exponentials.
(d) Find the constants in (c) that satisfy $y(0)=2, y^{\prime}(0)=-3 / 2$, and then use those constants to find the solution of the initial value problem.

Your answers for (b) and (d) should be the same. This demonstrates (for a particular case) that the real-valued and complex-valued forms of the general solution are just two different expressions for the same thing.

Problem 8. Use Euler's formula $e^{i x}=\cos x+i \sin x$ to show that $(\cos x+i \sin x)^{n}=$ $\cos n x+i \sin n x$, and then use this result to obtain the double-angle formulae $\sin 2 x=$ $2 \sin x \cos x$ and $\cos 2 x=\cos ^{2} x-\sin ^{2} x$.

Problem 9. Find two linearly independent solutions of

$$
t^{2} \frac{d^{2} y}{d t^{2}}+5 t \frac{d y}{d t}-5 y=0
$$

using the ansatz $y(t)=t^{\lambda}$.

