Practice problems for exam \#4, do not turn in. You should be able to do problems 2-4 without trouble. If you do have trouble, you should practice on more problems of this kind from Zill Exercises 8.2.

Problem 1: Suppose that the nth order linear system $\mathbf{x}^{\prime}=\mathbf{A x}$ has a pair of complex eigenvalues $\lambda_{1}=\mu+i \omega$ and $\lambda_{2}=\mu-i \omega$ and eigenvectors $\mathbf{v}_{1}=\mathbf{a}+i \mathbf{b}$ and $\mathbf{v}_{2}=\mathbf{a}-i \mathbf{b}$. Use Euler's formula $e^{i \omega t}=\cos \omega t+i \sin \omega t$ to show that the solution

$$
\mathbf{x}(t)=C_{1} \mathbf{v}_{1} e^{\lambda_{1} t}+C_{2} \mathbf{v}_{2} e^{\lambda_{2} t}
$$

can be written in terms of sines and cosines as

$$
\mathbf{x}(t)=c_{1}(\mathbf{a} \cos \omega t-\mathbf{b} \sin \omega t) e^{\mu t}+c_{2}(\mathbf{b} \cos \omega t+\mathbf{a} \sin \omega t) e^{\mu t}
$$

for an appropriate choice of c_{1}, c_{2} in terms of C_{1}, C_{2}. Note that if c_{1}, c_{2} are real-valued, so is the latter expression for $\mathbf{x}(t)$.

Problem 2: Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
-10 & -5 \\
8 & 12
\end{array}\right) \mathbf{x}
$$

Problem 3: Express the general solution in terms of both complex exponentials and sines and cosines.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rr}
6 & 1 \\
-5 & 4
\end{array}\right) \mathbf{x}
$$

Problem 4: Find the general solution of

$$
\mathbf{x}^{\prime}=\left(\begin{array}{rrr}
2 & 4 & 4 \\
-1 & -2 & 0 \\
-1 & 0 & -2
\end{array}\right) \mathbf{x}
$$

Problem 5: Find the general solution using a power series expansion about $x=0$

$$
(1-x) y^{\prime \prime}+y=0
$$

Problem 6: Find the general solution using a power series expansion about $x=0$

$$
y^{\prime \prime}+x^{2} y=0
$$

