Solutions (or at least answers) to the practice final exam.

1

Solve homogeneous problem using ansatz: $y(x)=e^{\lambda x}$.

$$
\lambda=3 \Rightarrow y_{h}=c_{1} e^{3 x}
$$

Use judicious guessing for $y_{p}: y_{p}=A x+B$. Plug this guess in and solve for A and B.

$$
\begin{aligned}
& A=-\frac{1}{3} ; \quad B=-\frac{1}{9} \\
& y=c_{1} e^{3 x}-\frac{1}{3} x-\frac{1}{9}
\end{aligned}
$$

2

Solve homogeneous problem as in first problem:

$$
\lambda= \pm 2 \Rightarrow y_{h}=c_{1} e^{2 x}+c_{2} e^{-2 x}
$$

Use judicious guessing: $y_{p}=A x e^{2 x}$. Note that we have multiplied our initial thought for a guess by x, because our homogeneous solution has the same form as the right hand side. Plug in and solve for A.

$$
\begin{aligned}
& A=3 \\
& y=c_{1} e^{2 x}+c_{2} e^{-2 x}+3 x e^{2 x}
\end{aligned}
$$

3

Find the homogeneous solutions y_{1} and y_{2} using the same ansatz: $y(x)=e^{\lambda x}$.

$$
\begin{aligned}
\lambda & = \pm 1 \\
y_{1} & =e^{x} \\
y_{2} & =e^{-x}
\end{aligned}
$$

Now use variation of parameters to find $y_{p}=u_{1} y_{1}+u_{2} y_{2}$. Use the formulas you should have to find u_{1} and u_{2}.

$$
W\left(y_{1}, y_{2}\right)=-2
$$

$$
\begin{aligned}
& u_{1}=\frac{1}{4}\left(e^{x}+\frac{1}{3} e^{-3 x}\right) \\
& u_{2}=-\frac{1}{4}\left(\frac{1}{3} e^{3 x}+e^{-x}\right)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
y & =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{4}\left(e^{2 x}+\frac{1}{3} e^{-2 x}\right)-\frac{1}{4}\left(\frac{1}{3} e^{2 x}+e^{-2 x}\right) \\
& =c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{3} \sinh 2 x
\end{aligned}
$$

4

Solution should be

$$
y(t)=\mathcal{U}(t-2 \pi)\left(\frac{1}{3} \sin t-\frac{1}{6} \sin 2 t\right)+\cos 2 t
$$

5

The eigenvalues of \mathbf{A} are: $\lambda_{1}=2$ and $\lambda_{ \pm}=5 \pm \sqrt{7}$. The corresponding eigenvectors are $\mathbf{v}_{\mathbf{1}}=[1,0,1]$ and $\mathbf{v}_{ \pm}=[-6,-1 \mp \sqrt{7},-2]$.
Thus the complex-valued solution is:

$$
y(t)=c_{1} \mathbf{v}_{\mathbf{1}} e^{2 t}+c_{2} \mathbf{v}_{+} e^{(5+\sqrt{7}) t}+c_{3} \mathbf{v}_{-} e^{(5-\sqrt{7}) t}
$$

And the real-valued solution is:

$$
y(t)=\tilde{c}_{1} \mathbf{v}_{\mathbf{1}} e^{2 t} e^{5 t}\left[c_{1}(\mathbf{a} \cos (\sqrt{7} t)-\mathbf{b} \sin (\sqrt{7} t))+\tilde{c}_{2}(\mathbf{b} \cos (\sqrt{7} t)+\mathbf{a} \sin (\sqrt{7} t))\right]
$$

where $\mathbf{a}=[-6,-1,-2]$ and $\mathbf{b}=[0,-\sqrt{7}, 0]$.

6

See previous problem sets etc.

