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Invariant solutions of shear flows have recently been extended from spatially periodic
solutions in minimal flow units to spatially localized solutions on extended domains. One
set of spanwise-localized solutions of plane Couette flow exhibits homoclinic snaking, a
process by which steady-state solutions grow additional structure smoothly at their fronts
when continued parametrically. Homoclinic snaking is well understood mathematically
in the context of the one-dimensional Swift-Hohenberg equation. Consequently, the
snaking solutions of plane Couette flow form a promising connection between the largely
phenomenological study of laminar-turbulent patterns in viscous shear flows and the
mathematically well-developed field of pattern-formation theory. In this paper we present
a numerical study of the snaking solutions, generalizing beyond the fixed streamwise
wavelength of previous studies. We find a number of new solution features, including
bending, skewing, and finite-size effects. We establish the parameter regions over which
snaking occurs and show that the finite-size effects of the traveling wave solution are due
to a coupling between its fronts and interior that results from its shift-reflect symmetry.
A new winding solution of plane Couette flow is derived from a strongly skewed localized
equilibrium.

1. Introduction

Invariant solutions of the Navier-Stokes equations are known to play an important
role in the dynamics of turbulence at low Reynolds numbers (Kawahara, Uhlmann
& van Veen 2012). Invariant solutions in the form of equilibria, traveling waves, and
periodic orbits have been computed precisely for canonical shear flows such as pipe flow
(Faisst & Eckhardt 2003; Wedin & Kerswell 2004; Duguet, Pringle & Kerswell 2008),
plane Couette flow (Nagata 1990; Kawahara & Kida 2001; Viswanath 2007; Gibson,
Halcrow & Cvitanović 2009) and plane Poiseuille flow (Waleffe 2001; Gibson & Brand
2014). The development of the invariant-solutions approach to turbulence has largely
occurred in the simplified context of small, periodic domains, or “minimal flow units”
(Jiménez & Moin 1991). More recently, invariant solutions with localized support have
been computed for flows on spatially extended domains. These include spanwise-localized
equilibria and traveling waves (Schneider, Marinc & Eckhardt 2010b; Schneider, Gibson
& Burke 2010a; Deguchi, Hall & Walton 2013; Gibson & Brand 2014) in plane Couette
flow, and spanwise-localized traveling waves (Gibson & Brand 2014) and a periodic orbit
(Zammert & Eckhardt 2014a) of plane Poiseuille flow. Avila, Mellibovsky, Roland &
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Hof (2013) computed a streamwise-localized periodic orbit of pipe flow, Mellibovsky &
Meseguer (2015) a streamwise-localized periodic orbit of plane Poiseuille flow, Brand
& Gibson (2014) a doubly-localized equilibrium solution of plane Couette flow, and
Zammert & Eckhardt (2014b) a doubly-localized periodic orbit of plane Poiseuille flow.
The existence and structure of these spatially localized solutions suggests that they are
relevant to large-scale patterns of laminar-turbulent intermittency, such as turbulent
stripes, spots, and puffs. For example, the periodic orbit of Avila et al. (2013) shares
the spatial structure and complexity of turbulent puffs in pipe flow, and its bifurcation
sequence provides a compelling explanation of the development of transient turbulence in
pipes. The doubly-localized equilibrium of Brand & Gibson (2014) has the characteristic
shape and structure of turbulent spots in low-Reynolds plane Couette flow, and for a
range of Reynolds numbers sits on the boundary between laminar flow and turbulence.
Analysis of these localized solutions has so far focused on their bifurcations from spatially
periodic solutions (Chantry, Willis & Kerswell 2014; Mellibovsky & Meseguer 2015) and
linear analysis of their decaying tails (Brand & Gibson 2014; Gibson & Brand 2014).

The spanwise-localized invariant solutions of plane Couette flow of Schneider et al.
(2010b), are notable for being the first localized solutions discovered, for their relation
to the widely-studied equilibrium solution of Nagata (1990); Clever & Busse (1997);
Waleffe (1998) (hereafter NBCW), and for exhibiting the particularly interesting feature
of homoclinic snaking. Homoclinic snaking is a process by which the localized solutions
grow additional structure at their fronts in a sequence of saddle-node bifurcations
when continued parametrically (Woods & Champneys (1999); Burke & Knobloch (2006,
2007a); Schneider et al. (2010a); see also § 3.1). Homoclinic snaking occurs in a number
of pattern-forming systems with localized solutions, including binary fluid convection
(Batiste & Knobloch 2005) and magneto-convection (Batiste, Knobloch, Alonso & Mer-
cader 2006), and it is well-understood mathematically for the one-dimensional Swift-
Hohenberg equation (Burke & Knobloch 2006, 2007a; Beck, Knobloch, Lloyd, Sandstede
& Wagenknecht 2009). Knobloch (2015) provides a comprehensive review of localization
and homoclinic snaking in dissipative systems. Though no explicit connection between
the Swift-Hohenberg and the Navier-Stokes equations is known, the striking similarity
of the localized plane Couette solutions and the localized solutions of Swift-Hohenberg
with cubic-quintic nonlinearity suggests there might be a mathematical connection
between the two systems. These similarities include the structure of localization, the
snaking behaviour, the even/odd symmetry of the snaking solutions, and the existence
of asymmetric rung solutions (Schneider et al. 2010a). One might envision, for example,
that a reduced-order model of the localized solutions (Hall & Sherwin 2010; Hall 2012;
Beaume, Chini, Julien & Knobloch 2015) might relate the spanwise variation of their
mean streamwise flow to the cubic-quintic Swift-Hohenberg equation. Such a relation
would link the mathematically well-developed field of pattern-formation theory to the
localized solutions of shear flows cited above, or to recent numerical studies of laminar-
turbulent pattern formation in extended shear flows (Barkley & Tuckerman 2005; Duguet,
Schlatter & Henningson 2010; Tuckerman, Kreilos, Schrobsdorff, Schneider & Gibson
2014).

In support of developing such connections between pattern-formation theory and shear
flows, we present in this paper a more detailed analysis of the snaking solutions of
Schneider et al. (2010b,a). In particular, we examine the effects of varying the streamwise
wavelength Lx of the solutions compared to the fixed Lx = 4π of Schneider et al. (2010a).
We find that homoclinic snaking is robust in Lx and that the snaking region moves
upwards in Reynolds number with decreasing Lx. The ranges of streamwise wavelength
and Reynolds number in which snaking solutions exist is found to be 1.7π 6 Lx 6 4.2π
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and 165 6 Re 6 2700. Additionally, we find several interesting solution properties
that are suppressed at the parameters studied in Schneider et al. (2010a). As Lx

decreases below 4π and Re increases above 165, the localized solutions deform appreciably
compared to their strictly periodic counterparts, the localized equilibria exhibiting a
linear skewing and the traveling waves a quadratic bending. We show that skewing and
bending are related to the respective symmetries of the equilibrium and traveling wave
solutions, and that bending induces finite-size effects in the traveling waves that scale
as the inverse of their spanwise width. In contrast, skewing induces no such finite-size
effects on the equilibrium solution. We show that the skewed solutions lead to a new
periodically winding form of the NBCW equilibrium solution of plane Couette flow.

The structure of this paper is as follows. § 2 outlines the problem formulation and
numerical methods. § 3 describes the features of the localized solutions at fixed streamwise
wavelength Lx, including homoclinic snaking, bending, skewing, and finite-size effects. § 4
discusses the effects of varying streamwise wavelength, including the regions of wavelength
and Reynolds number over which snaking occurs, the breakdown of snaking outside
these regions, and the stability of the solutions. § 5 discusses the periodic pattern in
the interior of the localized solutions and its relation to the NBCW solution. The new
winding solution is presented in § 5.

2. Problem formulation, methodology, and conventions

Plane Couette flow consists of an incompressible Newtonian fluid between two infinite
parallel plates moving at constant relative velocity. The Reynolds number is given by
Re = Uh/ν where U is half the relative wall speed, h is half the distance between
the walls, and ν is the kinematic viscosity. The x = (x, y, z) coordinates are aligned
with the streamwise, wall-normal, and spanwise directions, where streamwise is defined
as the direction of relative wall motion. After nondimensionalization, the walls at y =
±1 move at speeds ±1 in the x direction, and the laminar velocity field is given by
yex. We decompose the total fluid velocity into a sum of the laminar flow and the
deviation from laminar: utot = yex+u. Hereafter we refer to the deviation field u(x, t) =
[u, v, w](x, y, z, t) as “velocity.” In these terms the laminar solution is specified by u = 0,
p = 0 and the Navier-Stokes equations take the form

∂u

∂t
+ y

∂u

∂x
+ vex + u · ∇u = −∇p+

1

Re
∇2u, ∇ · u = 0. (2.1)

The computational domain Ω = [−Lx/2, Lx/2] × [−1, 1] × [−Lz/2, Lz/2] has periodic
boundary conditions in x and z and no-slip conditions at the walls. For spanwise-localized
solutions, Lz is set to be large so that Ω approximates a spanwise-infinite domain. We
use L̂z to denote the spanwise wavelength of nearly periodic, small-wavelength patterns
within the spanwise-localized solutions; typically L̂z � Lz. In the present work we impose
zero mean pressure gradient in all computations, leaving the mean (bulk) flow to vary
dynamically. As described in Gibson, Halcrow & Cvitanović (2008); Gibson et al. (2009),
direct numerical simulations are performed with Fourier-Chebyshev spatial discretization
with 2/3-style dealiasing and semi-implicit time-stepping. Traveling-wave and equilib-
rium solutions of (2.1) are computed with a Newton-Krylov-hookstep algorithm. Spatial
discretizations are chosen so that truncated Fourier coefficients are O(10−5) at most and
truncated Chebyshev coefficients are O(10−9). The computational domain length Lz is
chosen so that the magnitude of velocity is no more than 10−3 at z = ±Lz/2. The
adequacy of spatial resolution was tested by recomputing solutions at higher resolution.
Most of the results discussed in § 3, for example, were computed with 24 × 33 × 512
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gridpoints on a 3π×2×24π domain, for Reynolds numbers in the range 200 6 Re 6 350.
All software and solution data are available for download at www.channelflow.org.

The equilibrium and traveling-wave solutions discussed here are all steady states (in a
fixed or traveling frame of reference, respectively), so the energy dissipation rate balances
the power input from wall shear instantaneously:

D = I =
1

2Lx

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂u

∂y

∣∣∣∣
y=−1

+
∂u

∂y

∣∣∣∣
y=1

)
dx dz. (2.2)

Note that D is defined in terms of the deviation velocity u and not the total velocity
utot, so that D measures the excess energy dissipation of spanwise-localized solutions over
the laminar flow, which has D = 0. Since the internal structure of a spanwise-localized
solutions stays roughly constant as non-laminar structure grows at its fronts, D serves
as a good measure of the width of a solution. The lack of Lz normalization makes the
D of a spanwise-localized solution insensitive to the choice of spanwise length for the
computational domain in which it is embedded.

For discussing the symmetries of the flow we follow the conventions of Gibson & Brand
(2014), here adding the action of symmetries on the pressure field. Let

σx : [u, v, w, p](x, y, z)→ [−u, v, w, p](−x, y, z),
σy : [u, v, w, p](x, y, z)→ [u,−v, w, p](x,−y, z),
σz : [u, v, w, p](x, y, z)→ [u, v,−w, p](x, y,−z),

τ(∆x,∆z) : [u, v, w, p](x, y, z)→ [u, v, w, p](x+∆x, y, z +∆z), (2.3)

and let concatenation of subscripts indicate products, e.g. σxy = σxσy. For (`x, `z)-
periodic fields we define two half-wavelength translation operators τx = τ(`x/2, 0) and
τz = τ(0, `z/2). The standard group-theoretic angle-bracket notation indicates the group
formed by a set of generators; for example 〈σxy, τxσz〉 = {e, σxy, τxσz, τxσxyz}, where e
is the identity (Dummit & Foote 2004).

3. Solution properties at fixed streamwise wavelength

3.1. Snaking

The primary notable feature of the localized solutions is their homoclinic snaking.
Under continuation in Reynolds number at fixed streamwise wavenumber, the localized
equilibrium and traveling-wave solutions follow curves that snake upwards in the Re, D
plane, as shown in detail in figure 1 and over a larger range of D in figure 4(d). Velocity
fields corresponding to the labeled points in figure 1(a) are shown in figure 2. Figures
2(a,b,c) show that the traveling-wave solution grows additional structure at the solution
fronts as it moves upwards in D along the snaking curve, while the interior structure
remains nearly constant. The structure of the fronts is the same at alternating saddle-
node points (a,c), while the saddle-node point (b) between them has front structure of
opposite streamwise sign. Note that due to the σxy symmetry of plane Couette flow,
every traveling-wave solution u with wave speed cx has a symmetric partner σxyu with
wave speed −cx. The σxyu symmetric partner of figure 2(b) has fronts with the same
structure and streamwise sign as figure 2(a,c).

Figure 1(a) also shows “rung” solutions that bifurcate from the equilibrium solution
in a pitchfork bifurcation near the saddle-node bifurcation points of the equilibrium and
connect to the traveling wave near their saddle-node points (or vice versa). The rung
solutions are asymmetric, as if formed from an amplitude envelope that drifts in the
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(a) (b)

Figure 1. (color online) Homoclinic snaking of localized solutions at Lx = 3π. (a)
Snaking curves at low D (small spanwise width) for localized equilibrium (EQ), traveling-wave
(TW), and rung (RN) solutions. Labels indicate the solutions shown as velocity fields in figure
2. (b) Snaking curves at high D (large spanwise width). Filled circles indicate the points of zero
skewing (for equilibria) and zero bending (for traveling waves) along the snaking curves; signed
open circles mark the positions and signs of the maxima in magnitude of skewing and bending
(see § 3.3). Pressure fields for the labeled points are shown in figure 3. Both subplots are details
of the Lx = 3π snaking curve shown in figure 4(d).

spanwise direction as the solution grows away from its pitchfork bifurcation point (see
Kao, Beaume & Knobloch (2014) fig. 6). The rung solutions can also be understood as
a combination of two solutions near the saddle-node bifurcation point, with the same
Reynolds number and the same internal structure, but with different widths D. For
example, the equilibria marked 2d and 2f in figure 1(a) and depicted as streamwise
velocity fields in figure 2(d,f) are indistinguishable within the interior −5 < z < 5. But
their differing values of D indicate different spanwise widths. The contour lines of the
fronts of 2(f) extend towards |z| ≈ 10, whereas those of 2(d) reach just |z| ≈ 8. The
rung solution shown as figure 2(e) and marked 2e in figure 1(a) can then be understood
as splicing together the left half of figure 2(d) and the right half of figure 2(f). This
splicing can be done over a range of Re in the interior of the saddle-node bifurcation, i.e.
along the black lines of the rung branches shown figure 1(a). The splicing construction
is necessarily inexact, since the rung solutions have no symmetries and hence travel in
both x and z, compared to the equilibrium, which is fixed. However it is close enough
that such spliced velocity fields converge quickly to the rung solutions under Newton-
Krylov-hookstep search. The rung solutions in this paper were computed by splicing and
refinement, followed by continuation in Reynolds number.

3.2. Symmetries of localized solutions

The differences between traveling waves, equilibria, and rungs are intimately related
to the different symmetries of those solutions, which can be understood in terms of
symmetry-breaking bifurcations of the more symmetric, spatially periodic NBCW so-
lution. This is discussed in detail in Gibson & Brand (2014); here we present a brief
summary. With proper placement of the z origin, the traveling waves have a τxσz “shift-
reflect” symmetry. That is, a traveling-wave solution satisfies u = τxσzu or

[u, v, w, p](x, y, z) = [u, v,−w, p](x+ `x/2, y,−z). (3.1)

Solutions with this symmetry can travel in x but not z, since the inversion in z about
the origin locks the z phase of the solution, but no such restriction exists for x. For
similar reasons, the traveling waves can have nonzero mean streamwise velocity, but
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(a) (d)

(b) (e)

(c) (f)

Figure 2. (color online) Velocity fields of localized solutions illustrated by contours of
streamwise velocity in the y = 0 midplane, u(x, 0, z) and arrow plots of the streamwise-averaged
cross-stream velocity, [v̄, w̄](y, z). Eight contour levels are evenly spaced between ±0.9, with
negative u in dashed blue lines and positive in solid red. Contour lines for ū = 0 are superimposed
on the arrow plots. (a,b,c) show the traveling-wave (TW) solution at the three successive
lower saddle-node bifurcation points marked on the snaking curve in figure 1(a). (e,f) show
the equilibrium (EQ) solution at Re = 260 above and below an upper saddle-node bifurcation,
and (d) shows the rung (RN) solution at Re = 260, at points labeled in figure 1(a). The solution
is shown for Lx = 3π and on a subset of the Lz = 16π computational domain.

their mean spanwise velocity must be zero. The τxσz symmetry of the localized traveling
waves arises from a subharmonic-in-z bifurcation of the (`x, `z)-periodic NBCW solution,
which has symmetries 〈τxσz, τxzσxy〉 when taken in the spatial phase of Waleffe (2003),
The subharmonic-in-z bifurcation necessarily breaks the τxzσxy symmetry, since this
symmetry implies `z periodicity, as follows. If τxzσxyu = u, then (τxzσxy)2u = u. But a
brief calculation shows that (τxzσxy)2 = τ(0, `z). Thus the bifurcated solution loses the
τxzσxy symmetry of NBCW and retains only τxσz.

The localized equilibrium solution has σxyz inversion symmetry, satisfying

[u, v, w, p](x, y, z) = [−u,−v,−w, p](−x,−y,−z). (3.2)

As a result of the inversion of all velocity components about the origin, the spanwise-
localized solutions with this symmetry are prevented from traveling in x or z, and the
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spatial average of all velocity components is zero. The σxyz symmetry of the localized
equilibrium arises from a similar bifurcation of a phase-shifted NBCW solution. Shifting

the NBCW solution by a quarter-wavelength in z, u → τ
1/2
z u, changes each of its

symmetries s to the conjugate symmetry τ
−1/2
z sτ

1/2
z (Gibson et al. 2009). A brief

calculation shows that the conjugated symmetry group of the phase-shifted NBCW
solution is 〈τxzσxy, σxyz〉. The τxzσxy symmetry implies `z-periodicity, as before, so the
subharmonic-in-z bifurcation breaks the τxzσxy symmetry but retains σxyz.

The symmetries of the traveling-wave and equilibrium solutions and the lack of sym-
metry in rung solutions are evident in the velocity-field plots shown in figure 2. The z-
mirror, x-shift τxσz traveling-wave symmetry (3.1) is particularly apparent in the fronts
of the midplane u contour plots of figure 2(a,b,c), and an even z-mirror symmetry is
apparent in the corresponding x-averaged cross-stream [v̄, w̄](y, z) plots. It is also evident
from these plots why the traveling-wave solution travels in x. In each of figure 2(a,b,c),
both the u(x, 0, z) plots and the [v̄, w̄](y, z) plots show a clear imbalance between the
positive/negative streamwise streaks. In comparison, for the equilibrium solutions, the
σxyz symmetry of the equilibrium matches each streamwise streak at negative z with an
equal streak at positive z of opposite sign. The rung solution figure 2(e), in contrast, has
no symmetry at all. The lack of symmetry in the rungs is due fundamentally to their
symmetry-breaking bifurcations from the traveling-wave and equilibrium solutions. It
can also be understood physically as a consequence of the formation of rungs via splicing
as described in § 3.1, which clearly breaks the σxyz symmetry of the equilibrium solution
(or the τxσz symmetry if constructed by splicing traveling waves). The complete lack of
symmetry in rung solutions means they generally have nonzero wave speeds and nonzero
net velocity in both the stream- and spanwise directions.

3.3. Bending, skewing, and finite-size effects

The equilibrium (EQ), traveling-wave (TW), and rung solutions (RN) shown as velocity
fields in figure 2 are at low D and thus have small spanwise width. The three different
types of solutions appear at first glance to consist of a few copies of the same spanwise-
periodic structure placed side-by-side, with fronts on either side that taper to laminar
flow. This description, however, is neither entirely accurate nor complete. First of all, the
interior structure of the three types of solutions must differ at least slightly because the
solution types move at different wave speeds (cx = cz = 0 for equilibria, cx 6= 0, cz = 0
for traveling waves, and cx 6= 0, cz 6= 0 for the rungs). But further differences between
the three solutions types become apparent at higher D and greater spanwise width. In
this subsection we show that

• the EQs skew, displaying a linear tilt in x against z (figure 3a),
• the TWs bend, displaying a quadratic curvature in x against z (figure 3b),
• the EQ snaking region has constant bounds in Re (figure 4d),
• the TW snaking region is wider but converges to the EQ’s as D−1 (figure 4d),
• the TW’s streamwise wavespeed decreases to zero as D−1, (figure 4c),
• the EQ’s interior structure is periodic and winds in x, z (figure 3a), and
• the TW’s interior structure is nonperiodic and slowly modulated in z (figure 3b).

The common thread among these phenomena is the interplay between the fronts and
the interior structure. Much of the above can be understood by assuming that the
fronts are the determining structures of the solutions, and viewing the other properties
as a consequences of the fronts and their orientations, as determined by the solution
symmetries.
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In this paragraph we present a brief sketch of the interplay between the fronts, sym-
metries, and solution properties. A fully detailed presentation follows in the remainder
of the subsection. For the equilibrium, the odd symmetry and opposite orientation of
the fronts about the origin produces a linear x, z skew within the solution’s interior. The
uniform linear skew allows for periodic structure in the interior that winds linearly in x, z.
The winding periodic structure oscillates with D, but is otherwise independent of the
solution’s overall spanwise width. Consequently, many equilibrium solution properties are
independent of the overall spanwise width. In contrast, for the traveling wave, the even
z-mirror symmetry and similar orientation of the fronts produces quadratic x, z bending
in the interior. This curvature necessarily breaks the periodicity of the solution’s interior
structure and couples the interior structure and global properties to the spanwise width.
The wave speed, bending, snaking region, and interior modulation of the traveling wave
all vary according to the relative size of the fronts to the spanwise width, that is, as D−1.

Bending and skewing are most clearly illustrated in terms of the solution pressure
fields for the points marked on the snaking curve of figure 1(b). The interior structure of
the equilibrium solution in figure 3(a) is oriented along a diagonal line in the x, z plane,
whereas that of the traveling wave in figure 3(b) curves upward in x with increasing z. We
call the former effect skewing and the latter bending. Skewing is an x, z-odd phenomenon
associated with the σxyz equilibrium symmetry (3.1), which gives an odd symmetry
p(x, z) = p(−x,−z) in the y = 0 midplane. Similarly, bending is x, z-even and associated
with the τxσz traveling-wave symmetry (3.2), which gives an even symmetry p(x, z) =
p(x + `x/2, −z) in the midplane. We quantify skew or bending by the slope (dx/dz) or
curvature (d2x/dz2) of an interpolating function that passes through the local minima
and maxima of the midplane pressure field. Measured this way, bending and skewing are
nearly constant throughout the interior of any given solution, as illustrated by the lines
of constant slope or curvature in figure 3.

It is notable that the fronts of equilibrium and traveling-wave solutions are indis-
tinguishable at maximum skew/bend (for example, the right-hand sides near z ≈ 20 in
figure 3a,b) and also at zero skew/bend (figure 3c,d). The fronts on the left-hand sides are
determined from the right by symmetry. For the equilibrium, the odd p(x, z) = p(−x,−z)
symmetry means the dx/dz slope of the structure has the same sign and magnitude at
both the left and right fronts, so that the two fronts can be connected by a uniform
periodic structure with constant slope. Importantly, the constant linear slope means the
equilibrium solution can exist two steps higher up in D (spanwise width) on the snaking
curve, with the same internal winding structure and the same fronts, simply by adding
more of the same interior periodic winding structure (or one step by adding half as
much and flipping the solution with σz). The fact that the equilibrium solution can be
extended in spanwise width this way with no change in interior structure thus explains
why it snakes in a fixed region of Reynolds numbers, independently of D.

The even p(x, z) = p(x+`x/2, −z) symmetry of the traveling wave, on the other hand,
means that the fronts impose a dx/dz slope with opposite signs at either end, so that the
line connecting them generally must curve, as in figure 3(b). We observe two features of
this curvature in all localized traveling-wave solutions. First, the curvature is constant
throughout the solution interior, so that the slope changes uniformly throughout. Thus
in marked contrast to the equilibrium, the pattern on the interior of traveling wave is
not periodic, but instead changes smoothly throughout. This is apparent in the changing
relative streamwise phase of adjacent pressure minima and maxima of the traveling wave
in figure 3(b), but also more subtly in the long-z modulation of the pressure field, which is
seen most clearly in the change of negative pressure contours from one end of the solution
to the other. The positive pressure field has a similar modulation, which is less apparent
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(a)

(b)

(c)

(d)

Figure 3. (color online) Bending and skewing. Contour plots of pressure p(x, 0, z) in the
y = 0 midplane are shown for localized equilibrium (EQ) and traveling-wave (TW) solutions with
maximum and zero skewing and bending, corresponding to points marked on figure 1(b). In (a,c),
a line of constant slope passes through the pressure minima and maxima, showing uniformity
of skew throughout the interior of the equilibrium solution, with (a) showing maximum skewing
and (c) zero skewing. In (b,d), a line of constant curvature shows the uniformity of bending for
the traveling wave, with (b) showing maximum bending and (d) zero bending. Eight contour
levels are evenly spaced between p = ±0.025, dashed blue for negative p and solid red for
positive. The solution is shown for Lx = 3π and on a subset of the Lz = 16π computational
domain.

here but can be highlighted by a different choice of contour levels. Second, the slopes at
the fronts vary between fixed bounds, the same bounds as for equilibria. Consequently,
as the solution widens upwards along the snaking curve, the curvature decreases, and the
interior structure becomes more periodic.

Finite-size effects and D−1 scaling. Figure 4(a,b,c) show bending, skewing, and
wave speed as a function of D, in comparison to the Re, D snaking in figure 4(d). Several
features are notable. First, the solutions snake twice as fast in Re as in skewing, bending,
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(a) (b)

(c) (d)

Figure 4. (color online) Bending (a), skewing (b), and wave speed (c) in comparison to
snaking in Reynolds number (d) for the equilibrium (EQ), traveling-wave (TW), and rung
(RN) solutions at Lx = 3π. Dotted lines show the D−1 envelope of wave speed and bending for
the traveling wave and the D = const envelope of equilibrium skewing. In (a) two independent
dotted lines of form R+ cD−1 are shown. The values of R for the two lines were set as the lower
and upper bounds of the equilibrium snaking curve (R = 236 and R = 268), and the values
of c chosen to fit the envelope of the traveling-wave snaking curve. Labeled points correspond
to pressure fields shown in figure 3. The breakdown of homoclinic snaking for D > 160 in (d)
occurs when the spanwise growth of the localized solution reaches the edges of the Lz = 24π
computational domain.

or wave speed. This is due to the fact that the points of maximum magnitude in skewing
and bending near the upper saddle-nodes in figure 1(b) have opposite sign. Second, the
traveling wave’s bending and streamwise wave speed curves are nearly identical (figure
4a and c) in all aspects, including position of minima, maxima, and zeros, D−1 scaling,
and remarkably, magnitude. Sizable discrepancies between bending and wave speed occur
only for D < 40, when the traveling wave consists of only a few copies of the interior
periodic pattern (e.g. figure 2a,b). The nearly identical magnitudes of nondimensionalized
bending and wave speed holds only for Lx = 3π; at other Lx the two quantities are
strongly correlated but differ in magnitude by a factor of two or less.

Third, each of the traveling wave’s bending, wave speed, and Re snaking plots has a
D−1 envelope, whereas the corresponding plots for the equilibrium are constant in D.
As argued above, the constancy of the equilibrium’s behaviour in D is due to the fact
that, with linear skew, the solution can be extended in z and thus bumped up to a higher
position on the snaking curve at the same Reynolds number simply by adding another
copy of the periodic pattern in the interior. Thus the equilibrium snakes between constant
bounds in Reynolds number and skewing. For the traveling wave, on the other hand,
if we take the slope dx/dz at the fronts as boundary conditions for constant interior
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(a) (b)

Figure 5. Core, front, tails structure of the localized solutions. (a) Maximum magnitude
of streamwise velocity (maxxy |u|) and magnitude of mean streamwise velocity (|〈u〉xy|) as a
function of z for the traveling wave at a point of maximum bend (Re = 275, D = 48). The
|〈u〉xy| line is dotted when 〈u〉xy is negative. (b) Magnitude of the kxth streamwise Fourier
mode for kx = 0, 1, 2, as measured by the root-mean-square magnitude of ûkx(y, z) over y as a
function of z. The computational domain is 3π × 24π.

curvature d2x/dz2 over a spanwise width that scales as D, then the curvature must
scale as D−1dx/dz. Given that the slope of the fronts oscillates between fixed bounds,
the bending then must oscillate between bounds that scale as D−1. For large D the
curvature thus approaches zero, and the interior of the solution approaches a constant
periodic pattern with skewing, bending, and wave speed approaching zero.

At the point of zero bending (figure 3d), the interior structure of the traveling wave
is periodic and practically indistinguishable from the structure of the equilibrium at
zero skew (figure 3c). These points occur near low-Re saddle-node bifurcations (figure
1b), suggesting that the reason for the close match in the lower bound in Re of the
equilibrium and traveling-wave snaking regions is that the two solutions near the lower
bifurcation point differ mainly in the orientation of one front. Lastly, the complete lack of
symmetry in rung solutions means that they generally travel in z as well as x; however,
the nondimensionalized z wave speeds are on the order of 10−5.

3.4. Core, front, tail structure

The localized solutions are formed from nearly periodic, large-amplitude core structure
that taper into small-amplitude, exponentially decaying tails. The near periodicity of the
core and the tapering fronts are apparent in figure 2 and figure 3. Figure 5 illustrates
the small-amplitude tails as well, through logarithmic plots of velocity magnitude as a
function of the spanwise coordinate z. Figure 5(a) shows |〈u〉xy|(z), the magnitude of the
xy-average streamwise flow, and maxxy |u|(z), the maximum over x, y of the magnitude of
the streamwise flow. Figure 5(b) shows the root-mean-square magnitude over y of several
streamwise Fourier modes as a function of z. The central feature of these plots is the
dominant exp(−α|z|) scaling of the tails (where α = 2π/Lx), consistent with the linear
analysis presented in Gibson & Brand (2014). This analysis showed that for large |z|, the
tails of spanwise-localized, streamwise-periodic solutions are dominated by the kx = ±1
streamwise Fourier modes, which take the form û±1(y) exp (±2παi(x− cxt)− α|z|)+c.c..
The exp(−α|z|) scaling of the kx = 1 mode is apparent in figure 5(b). The magnitude of
the streamwise velocity in the tails (maxxy |u|) is dominated by the kx = ±1 modes and
thus has the same exp(−α|z|) scaling, as shown in figure 5(a). The exp(−2α|z|) scaling
of the kx = 0 Fourier mode in figure 5(b) results from a resonance between the kx = ±1
modes, which, when summed and substituted into the nonlinearity u · ∇u, produce an
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Figure 6. Net streamwise flow and wave speed of the traveling wave. The net
streamwise flow ū = (LxLy)−1

∫
xyz

u dx dy dz of the traveling wave at Lx = 3π varies between

roughly fixed bounds, in comparison to the D−1 scaling of the wave speed. Wave speed is
magnified by a factor of twenty for visibility.

exp(−2α|z|) forcing term in the kx = 0 momentum equation. The kx = 0 Fourier mode
carries the xy-average velocity, so |〈u〉xy| in figure 5(a) has exp(−2α|z|) scaling. The
dominant kx = 1 mode thus produces a small, decaying, but non-zero and constant-sign
mean streamwise velocity in the solution tails.

The mean streamwise flow 〈u〉xy(z) of the traveling wave has a number of interesting
features due to its z-even symmetry, which results from the σzτx symmetry of the solution
u. For one, 〈u〉xy(z) has the same sign in both tails (positive for the solution depicted
in figure 5). Additionally, even z symmetry allows for imbalance between positive and
negative mean streamwise velocity when summed across the core and front regions. For
example, there are three positive 〈u〉xy streaks and four negative large-magnitude streaks
across the core and initial front of the traveling wave in figure 5, flanked by two lower-
magnitude positive streaks. Summing across the core and fronts, and the weak positive
tails, gives a net negative streamwise flow across the entire computational domain. Thus
we have, with zero pressure gradient conditions, a steady-state solution whose streamwise
flow is net negative in the interior, net positive in the tails, and net negative over the whole
flow domain. Figure 6 shows how the net streamwise flow ū = 1/(LxLy)

∫
xyz

u dx dy dz

varies along the snaking curve (again, the lack of Lz normalization provides for a measure
of the deviation from laminar flow that is insensitive to the computational domain). Note
that ū varies between roughly fixed bounds as the spanwise width (D) increases, because
it results from an N versus N + 1 imbalance of large-magnitude streamwise streaks of
opposite sign. This is in contrast to wave speed and bending, which result from balances
between the fixed-sized fronts and the increasing core and therefore scale as D−1. For
the localized equilibrium solution ū is zero and the streamwise flows in the ±z tails have
opposing sign, due to σxyz symmetry of u and consequent odd symmetry in 〈u〉xy(z).

4. Effects of varying streamwise wavelength

4.1. Snaking region and snaking breakdown

In this section we examine the effects of changing the streamwise wavelength Lx.
The central results are that snaking is robust in Lx over the range 1.7π 6 Lx 6 4.2π
or 0.48 6 α 6 1.2, and that the snaking region moves upward in Reynolds number
with decreasing Lx, with snaking observed over the range 165 6 Re 6 2700. Each of
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(a) (b)

(c) (d)

Figure 7. (color online) Snaking as a function of streamwise wavelength Lx. (a)
Snaking curves for the equilibrium (EQ), traveling-wave (TW), and rung (RN) solutions at
Lx = 2π, 2.5π, 3π, and 4π. (b) Detail of snaking curve for Lx = 2.5π. (c) Snaking breakdown
for Lx > 4.2π. (d) Snaking breakdown for Lx 6 1.7π.

these bounds is reported to two digits accuracy. Thus the localized solutions and the
homoclinic snaking behaviour occur over a wide range of Reynolds numbers, including
the Re ≈ 300 to 400 range where Barkley & Tuckerman (2005) and Duguet et al. (2010)
observed laminar-turbulent patterns in plane Couette flow. Figure 7(a) shows snaking
curves for the localized solutions at a variety of streamwise wavelengths. The interlinked
snaking structure of the equilibrium, traveling-wave, and rung solutions is preserved
under variation in Lx with the following trends. As Lx decreases, the snaking region
moves upwards in Re and widens. As in the Lx = 3π case, the width in Re of any given
equilibrium snaking curve is constant in D, whereas the amplitude of the traveling-wave
snaking region decays as D−1. For Lx = 4π the excess amplitude of traveling-wave
snaking region over the equilibrium is too small to be observed.

Figure 7(c) and (d) illustrate the breakdown of homoclinic snaking outside the range
1.7π 6 Lx 6 4.2π. Above and below these bounds, the solutions are unable to grow
additional structure indefinitely at the fronts. Instead of snaking indefinitely, the solution
curves turn around and continue to higher Reynolds numbers at roughly constant
spanwise width. For Lx values just beyond the given range, the solutions snake a few
times before turning around, as illustrated by the Lx = 1.6π and 4.5π curves in figure
7(c,d). Figure 7(b) illustrates a peculiar defect in the homoclinic snaking scenario that
occurs at the particular value Lx = 2.5π. At this streamwise wavelength the snaking curve
for the traveling wave solution has two distinct branches. The solid curve labeled “TW
branch 1” was continued downward from high Reynolds numbers and small spanwise
widths (D ≈ 7) where it connects smoothly to the other snaking curves via continuation
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(a) (b)

Figure 8. Snaking region and maximum skewing as a function of wavelength. (a)
The snaking region in Re as a function of Lx for the localized equilibrium. The shaded region
indicates the range of Re within which snaking occurs at a given Lx. (b) Maximum magnitude
of skewing of the equilibrium solution as a function of Lx. For both figures, dots mark measured
values, and the curves are interpolated.

in Lx. However this solution branch does not snake; rather it turns around in a saddle-
node bifurcation and continues back to at least Re = 2000 at finite spanwise width.
In contrast the dot-dashed curve labeled “TW branch 2” does snake upward in D; it
constitutes the bulk of the Lx = 2.5π traveling wave snaking curve shown in figure 7(a).
The branch-2 traveling wave was obtained from the endpoint of the rung solution at
Re ≈ 360, D ≈ 22.5. At fixed Lx = 2.5π, the two branches remain distinct to Re = 2000
at least, though they can be connected by continuation in the two parameters Re, Lx. We
have observed similar defects in snaking curves at several other values of Lx (not shown).
It is possible that the snaking breakdown observed for Lx < 1.7π and Lx > 4.2π is of
this type. That is, there might be branches of the solution curves for such Lx at higher D
that are disconnected from the nonsnaking solution curves pictured in figure 7(c,d). We
have confirmed this in a few particular instances; for example, by continuing a D = 90
solution from Lx = 4π to Lx = 4.3π, where it forms a isola above and disconnected from
a lower-D solution branch.

Figure 8(a) shows the snaking region of the localized equilibrium in Reynolds number
as a function of the streamwise wavelength Lx. Snaking also occurs when the solutions
are continued in Lx with Re fixed, within the same shaded Re, Lx parameter regions.
The boundaries of the snaking region in Re decrease roughly exponentially, with Lx for
Lx 6 3π. As Lx increases to 4.2π, the lower bound of the snaking region approaches a
minimum of roughly Re = 165. It is notable that the breakdown of snaking at Lx ≈ 4π
closely coincides with the vanishing of the amplitude of the D−1 scaling in the traveling
wave’s snaking region, as seen figure 7(a) and (c). Similarly, the magnitudes of bending
and skewing decrease with increasing Lx, and at Lx ≈ 4π are too small to be observed in
plots of the velocity or pressure fields. Figure 8(b) shows the magnitude of the oscillation
in skewing over the snaking curve as a function of Lx, as measured by the slopes of the
lines through pressure minima and maxima, as shown in figure 3(b). It is possible that
the breakdown of snaking for Lx > 4.2π is related to the disappearance of these effects
at Lx ≈ 4π.

The breakdown of snaking for both Lx < 1.7π and Lx > 4.2π appears to be associated
with the development of defects in the interior pattern of the solution. Instead of
continuing to snake by growing additional structure at the fronts, the solutions develop
defects at the spanwise center and continue to high Reynolds numbers. Figure 9 shows
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Figure 9. (color online) A defect in a localized solution after the breakdown of snaking.
The streamwise velocity of the Lx = 4.5π localized equilibrium solution is shown for Re = 175
and D = 37, on the upper branch of the Lx = 4.5π curve in figure 7(c). Plotting conventions
are the same as in figure 2.

(a) (b)

Figure 10. (color online) Instability of the localized equilibrium in relation to width
and wavelength. The number of unstable eigenvalues of the localized equilibrium solution as
a function of spanwise width (D), overlaid on the Re, D snaking curve for (a) Lx = 4π, (b)
Lx = 3π.

the defect in the Lx = 4.5π equilibrium solution at (Re, D) = (175, 37), on the upper
branch of the Lx = 4.5π curve in figure 7(c). Defects in the Lx < 1.7π solutions are
quite weak and appear as subtle variations in visualizations of the velocity and pressure
fields. The breakdown of snaking and development of central defects observed here is
quite similar to that observed by Kao et al. (2014) for the Swift-Hohenberg equation
with heterogeneous forcing (see their fig. 8).

4.2. Stability

Figure 10 shows the number of unstable eigenvalues of the Lx = 4π and 3π equilibrium
solutions in comparison to their Re, D snaking curves. At Lx = 3π the equilibrium
has a minimum of two or three unstable eigenvalues at small spanwise width (low
D). Thus it is not strictly an edge state of the flow (Skufca, Yorke & Eckhardt 2006;
Schneider & Eckhardt 2006). However one of the corresponding unstable eigenfunctions
is antisymmetric, making the solution an edge state of the flow when constrained to
σxyz symmetry. In both cases there is a general trend toward more unstable modes as
the solution grows wider. The Lx = 3π, D ≈ 100 solutions depicted in figure 3(a,c) have
O(20) unstable eigenvalues. Superimposed on this general trend is an oscillation in which
the number of unstable eigenvalues increases and decreases along the snaking curve. For
both cases the local maxima (minima) in the number of unstable modes occur at points of
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(a)

(b) (c) (d)

Figure 11. (color online) Extraction of the interior periodic pattern of a spanwise
localized solution. (a) The spanwise-localized equilibrium at point of zero skew, Lx = 3π,
D = 47, and Re = 237. Vertical lines at z = ±2.85 mark one copy of the nearly periodic interior
structure. (b) An exact periodic equilibrium obtained by Newton-Krylov refinement of the
structure extracted from (a), with Lx, Lz = 3π, 5.7 and Re = 237. (c) The lower-branch NBCW
equilibrium at the same parameter values as (b), obtained by continuation. Plotting conventions
for (a,b,c) are the same as in figure 2. (d) Bifurcation curves for the interior periodic pattern
and the NBCW equilibrium for Lx = 2π, 3π and 4π and aspect ratios Lx/Lz = 1.74, 1.65, 1.74
respectively. The periodic interior pattern and lower-branch NBCW equilibrium shown in (b,c)
are marked on the Lx = 3π curve with a circle and square respectively. The interior pattern
extracted from spanwise-localized equilibrium at Lx = 2π and 4π are also marked with circles.

maximum (minimum) skewing magnitude. In other words, strongly skewed solutions are
more unstable than solutions with weak or zero skew. The same trends occur at Lx = 2π,
with the smallest-width solution starting with six unstable eigenvalues. The trend towards
more instabilities with increasing solution size contrasts with the one-dimensional Swift-
Hohenberg equation, for which the number of unstable eigenvalues oscillates between
zero and two with each cycle along the snaking curve (Burke & Knobloch 2007a,b).

5. The periodic pattern of the core

5.1. Relation of the periodic pattern to the NBCW solution

Schneider et al. (2010b) and Schneider et al. (2010a) established that the snaking
solutions are closely related to the NBCW equilibria, in that they result from a localizing
bifurcation of NBCW and resemble the structure of NBCW in their interior. However,
the relationship between the core structure and the NBCW solutions is more complicated
than previously supposed. In particular, for Lx 6 3π, the interior pattern and the NBCW
solution lie on distinct solution curves when continued in Reynolds number, although
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these curves can be connected by continuation in the higher-dimensional parameter space
Lx, Lz,Re.

To compare the interior pattern to the NBCW solution, we extracted one copy of the
interior pattern of the equilibrium at a variety of Lx values, as illustrated for Lx = 3π
in figure 11. We begin in figure 11(a) with a streamwise-localized equilibrium solution
at a point along the snaking curve of zero skew, in order to maximize the spanwise
periodicity of the interior pattern. The natural spanwise wavelength L̂z = 5.70 of the
interior pattern was determined by finding the zeros of 〈u〉xy(z) on either side of z = 0. In
figure 11(a) these points are marked with vertical lines at z = ±2.85. The nearly periodic
interior pattern was then interpolated onto uniformly spaced grid points for a spanwise
periodic computational domain of width Lz = 5.70 and refined with a Newton-Krylov
search to the exact equilibrium shown in figure 11(b). We performed this operation to
find the exact equilibrium solution corresponding to the interior periodic pattern at
several streamwise wavelengths in the range 2π 6 Lx 6 4π. In each case the divergence
and the Gibbs phenomenon of the interpolated field were small and the Newton-Krylov
refinement converged quickly onto an exact equilibrium. The natural aspect ratio of the
interior pattern was always found to be in the range 1.65 6 Lx/L̂z 6 1.75.

Figure 11(d) shows bifurcation diagrams for the NBCW solution and exact equilibrium
computed from the interior pattern for Lx = 2π, 3π, and 4π. Since these solutions are
spanwise as well as streamwise periodic, we use the conventional measure of energy
dissipation and wall shear rate

Dtot = Itot =
1

2LxLz

∫ Lx/2

−Lx/2

∫ Lz/2

−Lz/2

(
∂utot
∂y

∣∣∣∣
y=−1

+
∂utot
∂y

∣∣∣∣
y=1

)
dx dz. (5.1)

The circles mark the Re, Dtot positions of the interior-pattern equilibrium solutions com-
puted from localized solutions as described above, and the lines indicate the parametric
continuation of these solutions in Re. For Lx = 4π it was straightforward to continue
the NBCW solution to the same aspect ratio and Reynolds number and confirm that
the pattern and the NBCW solution were the same. However, as Lx decreases, the
upper portion of the solution curve pinches off at a codimension-2 bifurcation point
near Lx = 3π, Re = 237, leaving the interior pattern and NBCW on distinct solution
curves. This pinching occurs at an Lx value just below the Lx = 3π solution curve shown
in figure 11(d). For Lx = 2π, the solution curves for the interior pattern (dash-dot line
marked with a circle) and the NBCW solution (dash-dot, no marker) are distinct.

5.2. A winding solution of plane Couette flow

It is possible to compute a spatially periodic winding solution from a skewed localized
equilibrium, that is, a solution with fundamental domain size Lx, L̂z that is strictly
periodic in x, but whose z periodicity involves a phase shift in x,

u(x, y, z + L̂z) = u(x−∆x, y, z). (5.2)

One such solution is illustrated in figure 12. The solution was computed starting with
a localized equilibrium with strong skewing, like that shown in figure 3(a). An iterative
process of continuation in the computational domain length Lz and adjustment of skewing
by continuation in Reynolds number was performed to find a localized equilibrium whose
interior pattern divided the computational domain evenly (Lz/L̂z

.
= N) and whose

skew precisely aligned with the x, z diagonal of the computational domain. N copies
of this winding interior pattern were then interpolated onto the computational domain
as shown in figure 12 and refined with Newton-Krylov search. The resulting winding
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Figure 12. (color online) A winding equilibrium solution of plane Couette flow at
Re = 268. The solution is strictly periodic in x but has z periodicity involving a phase shift in
x of the form u(x, y, z + 5.642) = u(x − 0.496, y, z). Nineteen copies of the 3π × 5.642 pattern
fit in the 3π × 107.2 periodic computational domain. Contours of the midplane pressure field
p(x, z) are shown with the same plotting conventions as figure 3.

solution shown in figure 12 at Re = 268 has a Lx = 3π, Lz = 107.2 computational
domain and N = 19, giving L̂z = Lz/N

.
= 5.462, ∆x = Lx/N

.
= 0.496, and winding

symmetry u(x, y, z + 5.642) = u(x− 0.496, y, z). The winding symmetry and u = σxyzu
were enforced during the Newton-Krylov search. It is likely that other winding solutions
of shear flows could be computed without recourse to skewed localized solutions, simply
by applying skewing coordinate transformations to known spatially periodic solutions
and refining with Newton-Krylov search.

6. Conclusions

We have shown that homoclinic snaking is robust under changes in streamwise wave-
length for the spanwise-localized solutions of plane Couette flow of Schneider et al.
(2010a). Homoclinic snaking occurs for these solutions over streamwise wavelengths in
the range 1.7π 6 Lx 6 4.2π and Reynolds numbers 165 6 Re 6 2700, and the snaking
region moves upwards in Re as Lx decreases. The localized equilibrium, traveling-wave,
and rung solutions thus exist at arbitrarily large spanwise widths over a wide range
of Reynolds numbers. Several new properties of the solutions become apparent as Lx

decreases below 4π, most importantly the linear skewing of the equilibrium and quadratic
bending of the traveling wave. The traveling wave exhibits finite-size effects such as D−1

scaling of the bending, wavespeed, and snaking region, due to the nonuniform structure
in the solution core induced by the quadratic bending. The linear skewing of the localized
equilibrium solution, on the other hand, induces no such finite-size effects. Its core region
is very nearly periodic, close enough that a strictly periodic winding solution can be
easily developed from it. The number of instabilities of the localized solutions increase
with Reynolds number, with spanwise width, and with skewing. Thus, at a fixed Reynolds
number, from a statistical viewpoint one would expect narrow patches of the localized
pattern to appear more frequently than wide patches, and with weak rather than strong
skewing.

The homoclinic snaking of these localized solutions suggests the Navier-Stokes equa-
tions might be related to the Swift-Hohenberg equation under plane Couette flow con-
ditions and for certain parameter ranges and flow states. A primary motivation for
this paper is to clarify the parameter ranges and solution structures for which this
connection might occur. Our results indicate that homoclinic snaking is a finite-Reynolds,
finite-wavelength effect, and that the streamwise wavelength and the Reynolds-number
snaking region are strongly coupled. Thus it is unlikely that an analytic understanding of
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homoclinic snaking in shear flows will be found via asymptotic analysis in large-Reynolds
or large-wavelength limits. If the spanwise-localized solutions are to be understood as
a long-wavelength modulation of a small-wavelength, spanwise-periodic pattern, our
results show that the periodic pattern is a form of the NBCW solution at aspect ratio
Lx/Lz ≈ 1.7. For Lx < 3π, under continuation in Reynolds number, the periodic pattern
lies on a solution curve distinct from the widely-studied NBCW lower-branch solution.

We see no clear connection between the skewing of the localized equilibrium solution
and the skewed laminar-turbulent patterns observed in plane Couette flow by Barkley
& Tuckerman (2005, 2007), and Duguet et al. (2010). The localized solutions exist over
a much wider range of Reynolds numbers than the 300 6 Re 6 400 range of observed
laminar-nonlaminar patterns. As shown in figure 7(a), this range depends very much on
the streamwise length Lx. For the Lx = 3π length studied in § 3, the Reynolds number
range for snaking is very similar to 300 6 Re 6 400.

Also, the skewing of the localized equilibrium is a streamwise phase shift of the
interior pattern as function of spanwise coordinate, whereas the skewing of observed
laminar-turbulent patterns is in the orientation of the boundary between the turbulent
patches and the surrounding laminar flow. In contrast, the localized solutions studied here
are strictly streamwise periodic, and thus have laminar-nonlaminar boundaries aligned
with the streamwise direction. One potential route to finding invariant solutions with
skewed laminar-nonlaminar boundaries would be to find a streamwise-localized form of
a winding solution like that described in § 5.2. However, the angles observed in the
literature for laminar-turbulent patterns are quite different than those observed here.
These are typically reported as the angle β between the laminar-turbulent boundary and
the streamwise x direction; β and skew dx/dz are related by β = cot−1(dx/dz). Duguet
et al. (2010) report a range of 20◦ 6 β 6 70◦ for the boundaries of turbulent patches
in plane Couette flow for 324 6 Re 6 380. Barkley & Tuckerman (2005) find the range
15◦ 6 β 6 65◦ for laminar-turbulent patterns in a tilted minimal flow unit at Re = 350.
From figure 8, the localized equilibria that snake within this range of Reynolds numbers
have skew 0 6 |dx/dz| 6 0.15 or 81 6 β 6 90.
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