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Turbulent-laminar banded patterns in plane Poiseuille flow are studied via direct numerical simulations in a
tilted and translating computational domain using a parallel version of the pseudospectral code Channelflow.
3D visualizations via the streamwise vorticity of an instantaneous and a time-averaged pattern are presented,
as well as 2D visualizations of the average velocity field and the turbulent kinetic energy. Simulations for
2300 ≥ Rem ≥ 700 show the gradual development from uniform turbulence to a pattern with wavelength 20
half-gaps at Rem ≈ 1900, to a pattern with wavelength 40 at Rem ≈ 1300 and finally to laminar flow at
Rem ≈ 800. These transitions are tracked quantitatively via diagnostics using the amplitude and phase of the
Fourier transform and its probability distribution. The propagation velocity of the pattern is approximately
that of the mean flux and is a decreasing function of Reynolds number. Examination of the time-averaged
flow shows that a turbulent band is associated with two counter-rotating cells stacked in the cross-channel
direction and that the turbulence is highly concentrated near the walls. Near the wall, the Reynolds stress
force accelerates the fluid through a turbulent band while viscosity decelerates it; advection by the laminar
profile acts in both directions. In the center, the Reynolds stress force decelerates the fluid through a turbulent
band while advection by the laminar profile accelerates it. These characteristics are compared with those of
turbulent-laminar banded patterns in plane Couette flow.

PACS numbers: 47.20.-k, 47.27.-i, 47.54.+r, 47.60.+i

I. INTRODUCTION: PHENOMENON AND METHODS

The transition to turbulence is one of the least un-
derstood phenomena in fluid dynamics. Transitional
regimes in wall-bounded shear flows display regular pat-
terns of turbulent and laminar bands which are wide and
oblique with respect to the streamwise direction. These
patterns have been studied in counter-rotating Taylor-
Couette flow1–7 and in plane Couette flow6–14.
Turbulent-laminar banded patterns have also been ob-

served in plane Poiseuille (channel) flow, numerically by
Tsukahara et al.15–19 and experimentally by Hashimoto
et al.20. These authors computed turbulence statistics,
Reynolds stresses, energy budgets, the skin friction and
the near-wall behavior and two-point correlations for
these flows. Tsukahara et al.17 presented detailed vi-
sualizations of the mean flow as well as the effect of
turbulent bands on heat transport. Hashimoto et al.20

compared the range of Reynolds numbers, wavelengths
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and angles of the turbulent bands obtained experimen-
tally with the numerical results reported by Tsukahara et
al.18. Brethouwer et al.14 simulated a turbulent-laminar
pattern in Poiseuille flow as part of a larger study inves-
tigating the effects of damping by Coriolis, buoyancy and
Lorentz forces on patterns in transitional flows. The goal
of the present paper is to extend this work using methods
previously employed to study turbulent-laminar banded
patterns in plane Couette flow. In particular, we wish
to determine if these patterns can be reproduced in the
minimal geometry used in simulations of plane Couette
flow8–10, and to describe their evolution in time, their
propagation velocity, and the balance of forces they en-
tail.

Plane Poiseuille flow is generated by an imposed pres-
sure gradient or an imposed flux between two paral-
lel rigid plates. The usual non-dimensionalization and
reference frame for plane Poiseuille flow are such that
the plates are motionless, and the unit of length is half
the distance between them. Several definitions of the
Reynolds number are in use, corresponding to different
streamwise velocity scales: Rec uses the velocity at the
center of the channel, Rem uses the mean velocity across
the channel, i.e. the flux, and Reτ uses the wall shear
velocity. One of the standard choices, and that made
here, is to impose the flux and to scale the velocity by
3umean/2. For stationary walls, this corresponds to a
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FIG. 1. Plane Poiseuille flow a) with uwall = 0 and umean =
2/3 and b) with uwall = −2/3 and umean = 0. c) Tilted
reference frame with x aligned with schematically drawn tur-
bulent bands, at an angle of θ = 24◦ to the streamwise di-
rection, and z aligned with the pattern wave-vector. The
tilted box has dimensions Lx × Lz = 10 × 40. In order to
capture the same pattern, a box aligned with the streamwise
and spanwise directions would be required to have dimensions
Lstrm × Lspan = 40/ sin(24◦)× 40/ cos(24◦)) = 98.3× 43.7.

streamwise velocity u satisfying:

uwall = u(y = ±1) = 0 (1a)

umean =
1

2

∫ 1

−1

dy u(y) =
2

3
(1b)

for which the laminar flow is

ulam(y) = 1− y2 (1c)

as illustrated in Fig. 1a. In order to follow the pat-
terns more easily, a reference frame is used in which the
bounding plates move with velocity −2/3. The stream-
wise mean flow is set to zero for all Re meaning that
an appropriate pressure gradient is applied to oppose the
moving walls; see Fig. 1b. In this reference frame, the
velocity satisfies:

uwall = u(y = ±1) = −2

3
(2a)

umean =
1

2

∫ 1

−1

dy u(y) = 0, (2b)

so that the laminar flow becomes

ulam(y) = −2

3
+ (1− y2) (2c)

Defining the velocity scale to be

3

2
(umean − uwall) (3)

includes both cases (1a)-(1b) and (2a)-(2b). From (1c)
and (2c) it can also be seen that the velocity scale (3) can

be considered to be the difference between the maximum
and minimum velocities of the laminar flow correspond-
ing to the imposed flux, i.e. that Rem = Rec for the
laminar flow. (Many of the references we cite use an-
other factor, one14 or two15–21, in place of the 3/2 in (3);
when we cite Reynolds numbers from these references we
have multiplied them by the appropriate conversion fac-
tor of 3/2 or 3/4.) For the parameter range studied here,
the other Reynolds numbers in common use are related
to Rem phenomenologically by Rem ∼ 1.2Rec ∼ 21Reτ .
From now on, unless mentioned otherwise, the Reynolds
number Rem defined from (3) is denoted merely by Re.
Our simulations are run by imposing (2a)-(2b); distances
are given in units of the half-gap, velocities in units of (3)
and times in units of the corresponding advective time.

The reference frame used for this study is not only
translated, but also tilted with respect to the usual one,
as illustrated in Fig. 1c. As was done for plane Cou-
ette flow8–10, the horizontal part of the domain is a nar-
row rectangle whose short direction (here, the x axis,
with Lx = 10) is parallel to the expected direction of the
bands, at an angle of 24◦ from the streamwise direction.
The long direction (here, the z axis, with Lz = 40) is
parallel to the expected wave-vector of the bands. Thus:

êstrm = cos 24◦ êx + sin 24◦ êz, (4a)

êspan = −sin 24◦ êx + cos 24◦ êz (4b)

The reason for choosing 24◦ in plane Couette flow was
that this angle is in the range [24◦, 37◦] observed ex-
perimentally in very large-scale experiments6,7 (770 by
340 half-gaps in the streamwise and spanwise directions,
respectively), in which the flow was free to choose its
own angle; this range of angles is also observed in sim-
ulations by Duguet et al.12 in a domain of similar size.
This is also the case for plane Poiseuille flow. Tsukahara
et al.15–17 first produced turbulent-laminar patterns in a
domain with dimensions of 51.2 by 22.5 in the stream-
wise and spanwise directions, leading by construction to
θ = tan−1(22.5/51.2) = 23.7◦. The domain used by
Brethouwer et al.14 is very similar (55 by 25) and hence
leads to a similar angle of 24.4◦. Later simulations18

in a domain of size 328 by 128 (in which the flow was
relatively free to choose its own angle) produced pat-
terns with angles in the range [20◦, 25◦] while the exper-
iments of Hashimoto et al.20 showed angles in the range
[20◦, 30◦]. Our narrow tilted domain enforces an angle of
24◦; only patterns with this angle can be simulated.

The tilted x and z directions are taken to be peri-
odic and y is the usual cross-channel direction, for which
boundary conditions (2a) are applied. Periodic boundary
conditions on the velocity must be completed by speci-
fying either the constant pressure gradient or the flux
(or a combination of the two); we impose zero flux in
the spanwise as well as in the streamwise direction. The
streamwise, cross-channel and spanwise velocities con-
tinue to be denoted by u = (u, v, w) (even though x, y, z
do not correspond to these directions). The domain size
is Lx×Ly×Lz = 10×2×40. The choice of Lz was guided
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FIG. 2. 3D visualization of the a) instantaneous and b) time-averaged (∆T = 8000) streamwise vorticity of a turbulent-laminar
banded state at Re = 1100 over the entire domain of size Lx×Ly ×Lz = 10×2×40. The bands are parallel to the x direction,
while the small-scale vortices are aligned in the streamwise direction (dashed arrows) which is oriented at an angle of 24◦ to
the x direction. The maximum and minimum of the instantaneous streamwise vorticity is ±6.2 while that of the time-averaged
vorticity is only ±0.32. Features of both are emphasized by choosing the color scale [−0.5, 0.5]. The instantaneous vorticity,
while strongest on the bounding plates, is present throughout the domain, as shown by the (y, z) plane in front. This plane is
omitted from the time-averaged vorticity to reveal contrasting views on the upper and lower plates; the antisymmetry in the
vorticity results from the y-reflection symmetry of the average velocity.

by considerations similar to those for the angle, i.e. re-
sults from experiments and simulations in plane Couette
flow and plane Poiseuille flow. All of the references cited
previously 14–20 reported patterns with wavelengths in
the range [20, 30]. In our domain, only patterns whose
wavelength is a divisor of Lz can be simulated, i.e. 40, 20,
10, etc. The choice Lx = 10 is dictated by the require-
ment that the box be large enough to sustain turbulence,
more specifically that the spanwise dimension Lx sin θ be
wide enough to accomodate a pair of streamwise vor-
tices8–10,22–24.
Streamwise vortices are indeed a prominent feature of

turbulent regions, as shown in the visualization in Fig. 2a
of a computed turbulent-laminar pattern. The stream-
wise vorticity is particularly appropriate for represent-
ing turbulence in plane Poiseuille flow since it is zero for
laminar flow and, unlike the velocity, is not zero at the
plates, near which the turbulence is most intense. The
instantaneous vorticity, Fig. 2a, is localized in one region
of the domain and is aligned in the streamwise direc-
tion. Figure 2b shows the streamwise vorticity averaged
over ∆T = 8000 time units. The time-averaged vortic-
ity is much weaker than the instantaneous vorticity, and
is antisymmetric under reflection in y, showing that the
corresponding velocity is reflection-symmetric in y.
The simulations were performed with a parallelized

version of the pseudospectral C++-code Channelflow25.
Indeed, Orszag26 first demonstrated the power of his
pseudospectral method by calculating the famous critical
value Rec = 5772 for loss of stability of plane Poiseuille
flow. (It is well known that transition to 3D turbulence
takes place at Reynolds numbers well below this 2D in-
stability.) Channelflow’s integration domain is rectangu-
lar with periodic boundary conditions in the directions

parallel to the wall and no-slip boundary conditions at
the walls. Following Orszag’s original simulations and
subsequent work by Kleiser and Schumann27 and Kim
et al.21, functions are represented by a tensor product
of basis functions appropriate for these boundary condi-
tions: Fourier expansions in the wall-parallel directions
and Chebyshev polynomials in the wall-normal direction.
Functions are also represented on a tensor product of cor-
responding gridpoints, equally spaced in the wall-parallel
directions but on the Chebyshev collocation points in the
wall-normal direction. Orszag showed that an expansion
in Chebyshev polynomials with Chebyshev collocation
points, which are dense near the endpoints, is optimal
for resolving fine structures near the walls. In time, a
semi-implicit backwards differentiation algorithm28 with
a variable time-step is employed. The linear (diffusive)
part of the Navier-Stokes equations is carried out im-
plicitly in spectral space, since the Fourier modes are not
coupled by the Laplacian. The nonlinear (advective) part
is carried out explicitly in the grid space, where multipli-
cations are local.

This version of Channelflow is capable of working in
parallel on compute clusters by distributing the flow
fields over large numbers of processors, each of which
time-steps its share of data. The spectral coefficients of
the velocity field along x and z are distributed in such a
way that one processor has access to all Chebyshev coeffi-
cients of a small patch of (x, z) Fourier modes. Since the
linear diffusive step does not couple the different Fourier
modes, the implicit part of the equations can be solved
directly. For the explicit calculation of the nonlinear ad-
vective term, however, a global transpose operation of the
distributed data is necessary, which is implemented with
routines from the FFTW package29. First, the Cheby-
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shev transforms, which do not couple the different Fourier
modes, are computed locally. Subsequently, a transpose
is performed in the x, y direction and 2D Fourier trans-
forms of x − z planes are computed in parallel for the
different values of y. After the explicit calculation of the
nonlinear terms, the transformations are performed in re-
versed order to obtain the spectral representation, which
can be added to the linear part.
We useNx×(Ny+1)×Nz = 128 × 65 × 512 = 4.2×106

points or modes to represent the domain of size Lx×Ly×
Lz = 10 × 2 × 40, with a spacing of ∆x = ∆z = 0.08
and ∆y ranging from ∆ywall = 1− cos(π/64) = 0.001 to
∆ymid = cos(31π/64) = 0.05. For the highest Reynolds
number we simulate, Re = 2300, the ratio between the
viscous wall unit and the half-gap is 0.009, so ∆x+ =
∆z+ = 0.08/0.009 = 9, ∆y+wall = 0.001/0.009 = 0.11 and

∆y+mid = 0.05/0.009 = 5.6. For plane Poiseuille flow,
it is crucial to have sufficient resolution in the cross-
channel direction near the walls, where the turbulence
is concentrated. The resolution used here is similar to
that used in the simulations by Kim et al.21 (Re = 4200;
Reτ = 180) and Jiménez & Moin22; although these au-
thors used Ny = 128, they studied Reynolds that were
about twice the highest Reynolds number investigated
here and stated that using Ny = 64 produced simi-
lar results21. In terms of wall units, our resolution is
the same or finer than that used in these studies. Our
resolution is also close to that used by Tsukahara et
al.16,17 for Re = 1732 (Reτ = 80) and Re = 1327
(Reτ = 64). and higher than that of Brethouwer et al.14,
who used ∆x+ = 15, ∆z+ = 6.7 and Ny = 32 for a case
with Re = 700 (Reτ = 69). The timestep varied from
∆t = 0.03 for Re = 900 to ∆t = 0.015 for Re = 2300.
Simulations run on the IBM x3750 of the IDRIS super-
computer center using 32 processes typically took about
16 wall clock hours to simulate 10 000 advective time
units.

II. REYNOLDS-NUMBER SCAN

Figure 3 shows spatio-temporal diagrams of the span-
wise velocity. For Re ≤ 2000, each simulation is a con-
tinuation of the corresponding part of a long simulation
in which the Reynolds number is decreased in discrete
decrements of 100, which will be presented in Fig. 5 and
which itself is initialized with random noise. The simu-
lations with Re > 2000 were all initialized with the final
state of the Re = 2000 run.
The timeseries show w(zj , t) at x = 0, y = 0.8 (near

the upper plate), for 32 values zj separated by inter-
vals of ∆z = Lz/32 for Reynolds numbers varying from
2300 down to 800. Dark patches indicate rapid large-
amplitude oscillations in the spanwise velocity, i.e. tur-
bulent regions. The surrounding lighter patches are com-
posed of straight lines, indicating locations at which
the spanwise velocity remains constant or nearly so, i.e.
quasi-laminar regions.

For the highest Reynolds number, Re = 2300, the en-
tire interval 0 ≤ z ≤ Lz is dark, indicating turbulence
which is statistically uniform over the domain. As Re is
lowered to 2100, quiescent patches appear which move to-
wards the left (opposite to (umean−uwall)). Timeseries for
1900 ≥ Re ≥ 1400 show two clearly delineated turbulent
bands with a fairly well-defined wavelength and velocity.
From Re = 1300 to Re = 1200, there is a transition from
two to one turbulent band. New turbulent patches re-
peatedly branch off from existing ones; these are more
persistent and long-lasting for Re = 1300 than for 1200.
The velocity of the pattern decreases. For Re = 1100,
the pattern comprises a single band and is almost sta-
tionary; the band begins to disappear at T = 8700, be-
coming completely laminar by T = 9000. For Re = 1000
and 900, a single right-going band is present, which, for
Re = 900 disappears at T = 9700. For Re = 800, the
band disappears earlier, at around T = 2200.

For plane Couette flow, a qualitative distinction can
be made between patterns at higher Re, in which the
turbulent and quasi-laminar regions each occupy approx-
imately half of the domain, and patterns at lower Re, in
which the turbulent band occupies a smaller fraction of
the domain. The averaged high-Re patterns were shown9

to have a trigonometric dependence on z. In contrast, the
bands at lower Re were shown to be isolated states, in
that they retain their size when placed in a wider do-
main8 and are surrounded by truly laminar regions. A
comparison of the states at Re ≥ 1400 with those at
Re < 1300 shows that this distinction seems also to ap-
ply to plane Poiseuille flow. For Re ≥ 1400, the turbu-
lent bands occupy about half the width of the domain,
with the other half consisting of slightly chaotic flow,
as shown by the small-scale oscillations in w(zj , t). For
Re < 1300, the single turbulent band occupies much less
than the width of the domain and the flow reverts to lam-
inar quite close to the boundaries of the band, as shown
by the straight lines w(zj , t) for zj within a few multiples
of Lz/32.

The branching events at Re = 1300 and Re = 1200
indicate bistability between a pattern with wavelength
40 and wavelength 20; a domain with a larger or different
Lz would almost surely display bistability at a different
value of Re. There is also clearly an important random
component in the fact that relaminarisation occurs at
Re = 1100 but not at Re = 1000. Simulations with
different initial conditions would almost surely lead to
relaminarisation at different times; the properties of these
events must be studied statistically, as has been done for
pipe flow30,31 and for Couette flow32.

Figure 4 shows the propagation velocity as a func-
tion of Re. Propagation in the z direction is to be ex-
pected, since there is a substantial overlap between the
z direction and the streamwise direction. The fact that
the speeds are so small demonstrates that the turbulent
bands move essentially at the speed of the mean flow, as
was noted by Tsukahara et al.17 and by Hashimoto et
al.20. As was seen in Fig. 3, Re ≈ 1100 separates prop-
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2300 2200 2100 2000 1900 1800 1700 1600

1500 1400 1300 1200 1100 1000 900 800

FIG. 3. Spatio-temporal plots from simulations in domain of size Lx×Ly ×Lz = 10×2×40 in which the z direction is oriented
along the pattern wave-vector. Spanwise velocity timeseries w(zj , t) are shown for points along the line x = 0, y = 0.8 at 32
equally spaced values zj = jLz/32 for 2300 ≥ Re ≥ 800. Uniform turbulence can be seen for Re = 2300, traces of laminar
patches for 2200 ≥ Re ≥ 2000, increasingly well-defined left-going bands of wavelength 20 for 1900 ≥ Re ≥ 1400, a change in
wavelength and direction for Re = 1300, 1200, and an increasingly weak and fragile right-going pattern of wavelength 40 for
1100 ≥ Re ≥ 800.
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FIG. 4. Propagation speed of turbulent bands with respect
to the mean flow. The scale on the left (right) indicates the
velocity in the z (streamwise) direction; the two scales are
related by the trigonometric factor sin 24◦.

agation to the left (slower than the mean flow) and to
the right (faster than the mean flow). It is because the
pattern at Re = 1100 is approximately stationary in the
frame of the mean flow that this Reynolds number was
chosen to display the time-averaged flow shown in Fig. 2.
Although the number of bands is quantized, their veloc-
ity is not; moreover the velocity varies smoothly through
the change in the number of bands at Re = 1100. There-
fore it seems likely that that the velocity presented in
Fig. 4 is independent of the domain. Propagation veloc-
ities are in general quite sensitive to resolution; previous
simulations with less resolution in y showed the propa-
gation velocity to change sign at Re = 1400 instead of
Re = 1100. We have verified that the velocity does not
change appreciably with higher resolution.
An overall view of the evolution of the pattern can be

seen in the Reynolds-number scan of Fig. 5. This fig-
ure describes a simulation initialized at Re = 2000 with
a random initial condition and in which the Reynolds
number is lowered in discrete steps of 100, remaining at
each Re for a time of length ∆T = 2000. (The simula-
tions of length ∆T = 10 000 in Fig. 3 are continuations
for another ∆T = 8000 of each of the sections of Figure
5). Figure 5a shows streamwise velocity profiles u(y) at
intervals of ∆T = 2000 at a fixed value of x and z; these
are flat or parabolic, depending on whether the corre-
sponding flow or region is turbulent or laminar. Figure
5b, like Fig. 3, shows timeseries of the spanwise velocity
w(zj , t) at 32 equally spaced points in z.
The evolution from the random initial condition at

Re = 2000 leads rapidly to turbulence which is uniform
(without bands). As Re is lowered past Re ≈ 1800, two
quiescent patches appear (though the long time series
of Fig. 3 show that a muted version of this pattern al-
ready appears for higher Re, given sufficient time). Sev-

eral transitions are clearly visible: from two turbulent
bands to one at Re = 1200, from leftwards to rightwards
motion at Re = 1100, and from one turbulent band to
none at Re = 700. “Although we have not checked sys-
tematically for hysteresis, a simulation initialized with
the single-band Re = 1100 solution evolved quickly to a
left-moving pattern with two bands when the Reynolds
number was increased to 1400.”

Figures 5c,d show that these tendencies can be mea-
sured quantitatively via the modulus |ŵm(t)| and the
phase ẑm(t) of the discrete Fourier transform in z:

w(zj , t) =
∑
m

ŵm(t)eimzj
2π
Lz =

∑
m

|ŵm(t)|eim(z−ẑm(t)) 2π
Lz

(5)
averaged over appropriate time intervals:

⟨|ŵm(t)|⟩1000 ≡ 1

1000

∫ 1000

t′=0

dt′ |ŵm(t+ t′)| (6a)

⟨ẑm(t)⟩100 ≡ 1

100

∫ 100

t′=0

dt′ ẑm(t+ t′) (6b)

In Fig. 5c, ⟨|ŵ2(t)|⟩1000 rises from a low value when
Re is decreased below 1900, and is then overtaken by
⟨|ŵ1(t)|⟩1000 at Re = 1200, when one of the turbulent
bands disappears. Although the pattern for 1200 ≥ Re ≥
800 has wavelength λ = 40, it also contains higher har-
monics and so ŵ2 remains non-negligible.

Figure 5d shows the averaged phases ⟨ẑm(t)⟩100. When
the modulus is small, the phase loses significance, so
phases are shown only when the modulus exceeds a
heuristically determined threshold, 0.24 for m = 1 and
0.4 form = 2. The phases ⟨ẑ2(t)⟩100 and ⟨ẑ2(t)⟩100+Lz/2
track the centers of the two turbulent bands seen in
Fig. 5b for 1800 ≥ Re > 1200, while ⟨ẑ1(t)⟩100 tracks the
center of the single turbulent band for 1200 ≥ Re ≥ 800.

The instantaneous values of a(t) ≡ |ŵm(t)| collected
for each Reynolds number during the time that the flow
is partly or entirely turbulent (see Fig. 3) can also be used
to construct probability distribution functions. Because
|ŵm(t)| is a modulus, the range aj−1 < |ŵm(t)| ≤ aj cor-
responds to an annulus in the two-dimensional Cartesian
space of (ŵr

m, ŵ
i
m) of area

π(a2j − a2j−1) = 2π
(aj + aj−1)

2
(aj − aj−1) (7)

The bin boundaries aj can be chosen to correspond to
annuli of equal size by taking

aj ≡
√

j

Nbin
max

t
|ŵm(t)| (8a)

pj ∝ |{t : aj−1 < |ŵm(t)| ≤ aj}| (8b)

where |{}| denotes the number of elements of a set. An-
other possibility is to choose bin boundaries aj which are
equally spaced and to correct for the difference in annu-
lar areas (7) by dividing pj by (aj + aj−1)/2. A third
possibility is to choose bin boundaries such that each bin
contains the same number of values, and to divide pj by
(aj − aj−1)(aj + aj−1)/2. All three procedures lead to
similar probability distribution functions.
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a) b) c) d)

FIG. 5. Simulations in domain of size Lx × Ly × Lz = 10 × 2 × 40 The Reynolds number is decreased from 2000 to 700 in
discrete steps at time intervals of ∆T = 2000, as indicated along the axes on the right.
a) Instantaneous representative streamwise velocity profiles u(y) along the line x = z = 0 at intervals of ∆T = 2000.
b) Spanwise velocity timeseries w(zj , t) along the line x = 0, y = 0.8 at 32 equally spaced values zj = jLz/32.
c) Temporal average ⟨|ŵm(t)|⟩1000 (arbitrary units) of the modulus of the z-Fourier transform ŵm of the spanwise velocity.
d) Temporal average ⟨ẑm(t)⟩100 of the phase of ŵm at times for which ⟨|ŵm(t)|⟩100 is sufficiently large.
For c),d), the red disks indicate m = 2 (λ = 20), while the blue crosses indicate m = 1 (λ = 40).

FIG. 6. Above: probability distributions of the moduli of the Fourier components |ŵm(t)| form = 1 andm = 2 for representative
values of the Reynolds number. Below: maxima of the PDFS as a function of Reynolds number showing changes in regime
at Re ≈ 1900 and Re ≈ 1300. The red disks indicate m = 2 (λ = 20), while the blue crosses indicate m = 1 (λ = 40). The
maximum of both PDFS is located at zero for Re ≥ 1900. For 1900 > Re ≥ 1300, the m = 2 PDF has a maximum away
from zero, indicating a pattern of this wavenumber. For 1300 ≥ Re ≥ 800, the m = 1 PDF has a maximum away from zero,
indicating a pattern of this wavenumber.
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FIG. 7. Time-averaged deviation from laminar flow at Re =
1100 on a typical (z, y) plane (top) and on (x, z) planes at
various values of y. The (z, y) plot has been stretched by a
factor of 3 in the y direction for visibility. Flow for y < 0
resembles that for y > 0. Arrows indicate the direction of the
velocities while colors indicate its magnitude. Scale [0,0.2].

Figure 6 displays probability distribution functions
for m = 1 and m = 2 for representative Reynolds
number values. In the absence of a pattern, in particular
for uniform turbulence, the maximum (most probable
value) for |ŵm(t)| is zero, while for patterned flows, the
maximum is non-zero. The PDFs yield thresholds:
• Re ≈ 1900, separating uniform turbulence and a
pattern with m = 2, i.e. λ = 20
• Re ≈ 1300, separating patterns with m = 2 and
m = 1, i.e. λ = 20 and λ = 40
• Re ≈ 800, separating a pattern with m = 1 from
laminar Poiseuille flow.

III. MEAN FLOW AND FORCE BALANCE

Figure 7 presents views on various planes of the devia-
tion of the time-averaged flow from the laminar velocity.
The Reynolds number is 1100, as in Fig. 2. The flow
varies a great deal with y and z, but depends little on
x, as predicted for the tilted domain. In order to gain
more insight into this flow, we therefore form a 2D field
by averaging over Lx as well as ∆T = 8000:

⟨u⟩(y, z) ≡
∫ 8000

t=0

dt

∫ Lx

x=0

u(x, y, z, t) (9)

where ⟨⟩ has been redefined from (6). Fig. 8 presents
various aspects of ⟨u⟩. This figure agrees extremely well
with Fig. 3 of Tsukahara et al.17, which shows similar
quantities for a patterned flow at Re = 1327 averaged
over time and Lx. Tsukahara et al.17 do not show the
spanwise velocity, and include a number of other quan-
tities such as the shear stress and Reynolds shear stress
not shown here. The field is reflection-symmetric in y.
(Reflection in y changes the sign of the cross-channel ve-
locity, as it does for the streamwise vorticity shown in
Fig. 2b.)

Figure 8a shows the streamwise velocity. Unlike the
other parts of Fig. 8, this subfigure includes the lami-
nar flow. The waviness corresponds to the alternation of
parabolic and plug profiles which occur in laminar and
turbulent regions, respectively. The cross-channel veloc-
ity (Fig. 8b) still shows small-scale features despite the
averaging over Lx and ∆T = 8000. The spanwise veloc-
ity (Fig. 8c) shows distinctive chevron features. Figure
8d depicts the streamfunction associated with the devi-
ation of the mean velocity from the laminar flow in the
(y, z) plane. Two wide counter-rotating cells are stacked
in the gap. This is also the form of the mean flow ob-
served experimentally in the presence of a turbulent spot
by Lemoult et al.33. The direction of rotation of these
cells is such as to slow the streamwise flow in the middle
of the channel and accelerate it near the walls, in effect
transforming a parabolic profile to the slug profile.

Figure 8e presents the turbulent kinetic energy defined
by

Eturb ≡ 1

2
⟨ũ · ũ⟩, ũ ≡ u− ⟨u⟩ (10)

which is concentrated very near the boundaries, where
the shear of the laminar profile is greatest. The counter-
rotating cells (d) are centered at the same value of z
as the turbulent kinetic energy (e), but the maximum
deviation in the streamwise velocity (a) is located to the
right of this location. A shift between these quantities
was previously noted by Tsukahara et al.17 as well as in
the case of plane Couette flow6,7,9,10.

We can compare the appearance of these mean quan-
tities with the analogous ones in Fig. 5 of Barkley and
Tuckerman9 for plane Couette flow. For plane Couette
flow, the turbulent kinetic energy occupies most of the
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a) 〈u〉

b) 〈v〉

c) 〈w〉

d) 〈ψ〉

e) Eturb

↑ y

0 z → 40

FIG. 8. Mean flow in the (y, z) plane from simulation at Re = 1100 averaged over Lx and over time of ∆T = 8000.
a) Streamwise velocity ⟨u⟩ including laminar profile: the undulations correspond to profiles which are slug-like (turbulent
regions) or parabolic (laminar regions) in Fig. 5a. Scale [−0.67, 0.33].
b) Cross-channel velocity ⟨v⟩: small-scale structures are still visible despite averaging. Scale [−0.003, 0.003].
c) Spanwise velocity ⟨w⟩ with characteristic chevrons. Scale [−0.05, 0.05].
d) Streamfunction ⟨ψ⟩ shows two superposed layers of cellular flow in the (y, z) plane. The laminar velocity has been subtracted.
e) Turbulent kinetic energy Eturb: the red regions show a strong concentration near the bounding plates. Scale [0, 0.012].

a) Poiseuille Re = 1100 b) Couette Re = 300

FIG. 9. Streamwise Reynolds stress (green, (12a)), advective (blue, (12b)) and viscous (red, (12c)) forces as a function of z at
three y locations for the mean flow associated with turbulent-laminar (a) Poiseuille flow at Re = 1100 and (b) Couette flow at
Re = 300. Near the lower wall (y < 0), for both flows, the Reynolds stress force accelerates the fluid through the turbulent band
while the viscous force decelerates it; advection by the basic laminar flow changes sign in the middle of the band. In the center
(y = 0), for Poiseuille flow, advection accelerates the fluid while the Reynolds stress force decelerates it; for Couette flow, this
situation is reversed over half the turbulent region. Near the upper wall (y > 0), the force balance for Poiseuille flow is identical
to that near the lower wall; for Couette flow the balance near the upper and lower walls are related by centro-symmetry.
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interior of the gap and the (y, z) flow consists of a single
large rotating cell. As is the case for plane Couette flow,
variation in z is much slower than variation in y, An
obvious difference between the two flows is symmetry:
plane Poiseuille flow is reflection-symmetric in y, while
plane Couette flow is centro-symmetric in (y, z). That
is, variables u and w obey

F (−y, z) = F (y, z) Poiseuille (11a)

F (−y, z) =− F (y,−z) Couette (11b)

For other quantities, e.g. v or ψ, the change in sign is
opposite to that in (11a) and (11b). One of the striking
properties of turbulent-laminar banded patterns is that
their mean flow inherits the symmetries of the laminar
flow.
Figure 9a shows the main forces acting in the stream-

wise direction on the mean flow:

Fturb ≡ −⟨(ũ · ∇)ũ⟩ (12a)

Fadv ≡ − (ulam · ∇) ⟨u− ulam⟩ (12b)

Fvisc ≡
1

Re
∇2⟨u− ulam⟩ (12c)

We omit the larger forces governing laminar Poiseuille
flow:

∇plam =
1

Re
∇2ulam = − 2

Re
estrm (13)

as well as the smaller pressure gradient associated with
⟨u − ulam⟩ and the nonlinear interaction of ⟨u − ulam⟩
with itself. The three forces are plotted as a function of
z for values of y near the two walls and at the center
of the channel. To interpret Fig. 9, it is helpful to recall
that while z is not the streamwise direction, it has a com-
ponent in this direction; see Fig. 1c. Thus a streamwise
force which is positive (negative) accelerates (decelerates)
the fluid towards the right (left) in the z direction.
Figure 9b shows the balance of forces for an anal-

ogous state in plane Couette flow. We have chosen
Re = 300 because at this Reynolds number, the turbu-
lence in plane Couette flow is localized8, as is the case for
plane Poiseuille flow at Re = 1100. The domain of length
Lz = 80 is chosen to be twice that of the domain we used
for Poiseuille flow. For each flow, the origin in z has been
translated so that the turbulent region is at the center of
the graph. The nonzero y positions for which the forces
are plotted are those for which the forces are maximal. .
The different symmetries of the two flows, i.e. y-reflection
for Poiseuille and centro-symmetry in (y, z) for Couette
flow, are clearly visible in Fig. 9
The upper panels show the forces for y < 0, where the

shear of both basic flows is positive. The resemblance
between the force balance for the two flows is remark-
able. For both flows, Fturb is large and positive in the
turbulent region, accelerating the fluid towards the right,
and is counterbalanced primarily by Fvisc. The advective
force Fadv is comparable but smaller in magnitude; it acts
with Fturb in the left portion of the turbulent region and

against Fturb in the right portion. At the center (y = 0),
the curvature ∂2yu and hence Fvisc is small for Poiseuille
flow and negligible for Couette flow, For Poiseuille flow,
Fadv accelerates the fluid in the turbulent region, while
Fturb decelerates it. For Couette flow, this holds over
half the turbulent region, while the reverse is true over
the other half, as required by (11b). For y > 0, the flow
and forces for Poiseuille flow are the same as for y < 0,
while for Couette flow the flow and forces are reversed
from those at y < 0.

IV. DISCUSSION

We conclude with some further comparisons between
turbulent-laminar bands in Poiseuille and Couette flow.
The similarity in the balance of forces shown in figure 9
also strongly supports the idea that turbulent-laminar
patterns are maintained by the same physical mecha-
nisms in Poiseuille and Couette flow. It has been pro-
posed by Waleffe24 that plane Poiseuille flow can be
viewed as two superposed plane Couette flows. This is
consistent with the two cells and two turbulent regions
seen in Fig. 8d,e.

With this in mind, we compare the wavelengths and
Reynolds numbers of turbulent-laminar banded patterns
in Poiseuille and Couette flow. In our domain, the wave-
length of the patterns in plane Poiseuille flow is 20 at
higher Re and becomes 40 for lower Re. Turbulent-
laminar patterns in plane Couette flow have higher
wavelengths6–10: 40 for higher Re and 60 for lower Re.
The idea of considering Poiseuille flow as two super-
posed Couette flows suggests that Poiseuille flow should
be scaled by the quarter-gap rather than the half-gap.
This would make the pattern wavelength of 40 (quarter-
gaps) of plane Poiseuille flow at higher Re consistent
with the wavelength of 40 (half-gaps) observed for plane
and Taylor-Couette flow. It was already observed7,9 that
a unified Reynolds number Res based on the square
of the y-averaged shear of the laminar flow and the
quarter gap for plane Poiseuille flow could be defined
to yield Res = Rec/4 ≈ Re/4.6. For plane Couette
flow, using the constant shear and the half-gap, Res
is the usual Reynolds number. The range of existence
800 ≤ Re ≤ 1900 for turbulent-laminar patterns in plane
Poiseuille flow becomes 174 ≤ Res ≤ 413, which is of
the same order as the range of existence [300, 420] for
turbulent-laminar patterns in plane Couette flow. We
note that the Reynolds-number range over which pat-
terned turbulence is obtained numerically by Tsukahara
et al.18 is Rem ∈ [1125, 2250], i.e. Res ∈ [245, 490] and
the range obtained experimentally by Hashimoto et al.20

is Rem ∈ [1275, 1500], i.e. Res ∈ [277, 326]. It would be
unlikely to obtain more precise agreement since the anal-
ogy between Poiseuille and Couette flow is inexact in a
number of ways. For example, the turbulent near-wall
regions of plane Poiseuille flow occupy considerably less
than a quarter-gap. Second, in seeking a single measure
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of the shear in plane Poiseuille flow, it is not clear that a
simple average is the best candidate.
An important consequence of the differences in symme-

try is that the moderate-time averages of the turbulent-
laminar patterns in Couette flow are stationary while
those of Poiseuille flow have a well-defined velocity, which
we have shown in Fig. 4.
It is almost surely possible to produce patterns at an-

gles quite different from 24◦. In large-scale experiments
in plane Couette flow6,7 patterns were observed whose
angles ranged between 24◦ and 37◦; simulations in nar-
row tilted domains with imposed angles ranging from 15◦

and 66◦ all produced patterns8–10. The simulated pat-
terns whose angles are far outside the range [24◦, 37◦]
would presumably be unstable when placed in a less con-
strained geometry. Although the narrow tilted geometry
– the analogue of the minimal flow unit22,23 for maintain-
ing shear-flow turbulence – can be used to study some of
the characteristics of turbulent-laminar patterns, studies
in a less constrained geometry are necessary for under-
standing their genesis and fate. The spreading of turbu-
lent spots and fronts have been widely studied for plane
Poiseuille flow, e.g. experimentally by Lemoult et al.33,34

and numerically by Aida et al.35 and as well as numeri-
cally by Duguet et al.36 for plane Couette flow
Future work will focus on the mechanism maintaining

turbulent-laminar patterns and on the branching events
that accompany the change in wavelength and in speed.
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wavelength modulation of turbulent shear flows, Physica D 174,
100 (2003).

8D. Barkley and L. S. Tuckerman, Computational study of tur-
bulent laminar patterns in Couette flow, Phys. Rev. Lett. 94,
014502 (2005).

9D. Barkley and L. S. Tuckerman, Mean flow of turbulent-laminar
patterns in plane Couette flow, J. Fluid Mech. 576, 109 (2007).

10L. Tuckerman and D. Barkley, Patterns and dynamics in transi-
tional plane Couette flow, Phys. Fluids 23, 041301 (2011).

11J. Philip and P. Manneville, From temporal to spatiotemporal
dynamics in transitional plane Couette flow, Phys. Rev. E 83,
036308 (2011).

12Y. Duguet, P. Schlatter, and D. S. Henningson, Formation of
turbulent patterns near the onset of transition in plane Couette
flow, J. Fluid Mech. 650, 119 (2010).

13Y. Duguet and P. Schlatter, Oblique laminar-turbulent interfaces
in plane shear flows, Phys. Rev. Lett. 110, 034502 (2013).

14G. Brethouwer, Y. Duguet, and P. Schlatter, Turbulent-laminar
coexistence in wall flows with Coriolis, buoyancy or Lorentz
forces, J. Fluid Mech. 704, 137 (2012).

15T. Tsukahara, Y. Seki, H. Kawamura, and D. Tochio, Dns of
turbulent heat transfer in a channel flow at very low Reynolds
numbers, in Proc. of the First Int. Forum on Heat Transfer,
2004.

16T. Tsukahara, Y. Seki, H. Kawamura, and D. Tochio, DNS
of turbulent channel flow at very low Reynolds numbers, in
Proc. 4th Int. Symp. on Turbulence and Shear Flow Phenomena
http://www.rs.tus.ac.jp/~t2lab/paper/2005/TSFP4 tsuka.pdf,
pp. 935–940, 2005.

17T. Tsukahara, K. Iwamoto, H. Kawamura, and
T. Takeda, DNS of heat transfer in a transitional
channel flow accompanied by a turbulent puff-like
structure, in Turbulence, Heat and Mass Transfer 5
http://www.rs.tus.ac.jp/~t2lab/paper/2006/THMT5 tsuka F.pdf,
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