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We present two spanwise-localized travelling-wave solutions in the asymptotic suction
boundary layer, obtained by continuation of solutions of plane Couette flow. One of
the solutions has the vortical structures located close to the wall, similar to spanwise-
localized edge states previously found for this system. The vortical structures of the
second solution are located in the free stream far above the laminar boundary layer
and are supported by a secondary shear gradient that is created by a large-scale low-
speed streak. The dynamically relevant eigenmodes of this solution are concentrated
in the free stream, and the departure into turbulence from this solution evolves in
the free stream towards the walls. For invariant solutions in free-stream turbulence,
this solution thus shows that the source of energy of the vortical structures can be a
dynamical structure of the solution itself, instead of the laminar boundary layer.
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1. Introduction

In the last few decades, dynamical systems theory has been established as a new
paradigm for studying turbulence. The foundation for this progress has been the
computation of invariant solutions of the Navier–Stokes equations which capture
crucial features of turbulent flows at moderate Reynolds numbers. Fully 3D and
fully nonlinear invariant solutions, in the form of equilibria, travelling waves and
periodic orbits, have been computed for canonical confined shear flows such as pipe
flow, plane Couette and plane Poiseuille flow (Kawahara, Uhlmann & van Veen
2012). Such studies in minimal flow units have produced spatially periodic and thus
infinitely extended invariant solutions. More recently, spatially localized solutions
have been constructed for flows in large domains (Brand & Gibson 2014; Gibson &
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Brand 2014; Zammert & Eckhardt 2014). These localized solutions are better suited
to the investigation of transitional turbulence, which usually originates in localized
turbulent patches and shows rich spatio-temporal dynamics.

A natural further step is to extend invariant solutions from confined flows to
external flows and eventually free-stream turbulence. Similarities between external
and internal flows near transition suggest that this extension is possible; for example,
both plane Couette flow and the boundary layer exhibit roll–streak coherent structures
(Nagata 1990; Robinson 1991) and localized turbulent spots that grow into the
surrounding laminar flow. However, invariant solutions have not yet been computed
for developing boundary layers. The key difficulty is that the growth of the boundary
layer thickness with distance from the leading edge breaks the continuous translation
symmetry of the flow in the downstream direction. This broken symmetry disallows
downstream travelling-wave solutions, which are the dynamically simplest possible
invariant solutions and the most straightforward to compute.

We will therefore consider a modified canonical and well-studied open boundary
layer, the asymptotic suction boundary layer (ASBL). In the ASBL, constant suction
through a porous wall counteracts the growth of the boundary layer, and far from the
leading edge a parallel streamwise invariant flow is established (Schlichting 2004).
Several invariant solutions have been computed for the ASBL. Edge-tracking methods
in a minimal flow unit yield a periodic orbit of very long period (Kreilos et al. 2013).
In a spanwise-extended domain, a spanwise-localized relative periodic orbit has been
found (Khapko et al. 2013, 2014). The only known travelling waves of the ASBL
have been constructed by Deguchi & Hall (2014) (hereafter referred to as DH14).
Like the periodic orbits of Kreilos et al. (2013), one of the DH14 travelling waves is
dominated by vortical structures attached to the wall. The other has vortical structures
at a large distance from the wall. DH14 thus term these travelling waves ‘wall-mode’
and ‘free-stream’ coherent structures respectively. Both of the DH14 ASBL travelling
waves are localized in the wall-normal direction but periodic in the spanwise and
streamwise directions. The applicability of the high-Reynolds-number asymptotics
within the framework of vortex–wave interactions (Hall & Smith 1991) in growing
boundary layers was investigated in two further papers by the same authors (Deguchi
& Hall 2015a,b).

In this paper, we demonstrate the existence of wall-mode and free-stream travelling-
wave solutions of the ASBL that are localized in both the spanwise and the wall-
normal directions. Like the DH14 solutions, the wall mode has tilted counter-rotating
vortices and high- and low-speed streaks that reside in the near-wall laminar shear
region, while the vortices of the free stream lie within the free stream and support
streaks closer to the wall. We show that the free-stream travelling wave is dynamically
detached from the wall and supports turbulence localized in both the spanwise and the
wall-normal directions. While transitioning to turbulence, the localized turbulent region
in the cross-flow plane slowly and almost isotropically invades the laminar flow at
constant front velocity until the wall is reached.

2. Methods

The ASBL consists of an incompressible fluid streaming over a flat plate into
which it is homogeneously sucked at a constant rate. Far from the leading edge, the
suction exactly compensates the growth of the boundary layer and a translationally
invariant laminar profile emerges (Schlichting 2004). The laminar downstream velocity
increases from zero at the wall to the free-stream velocity U∞, with a characteristic
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length scale δ = ν/VS determined by the kinematic viscosity ν and the suction
velocity VS. Denoting the downstream, wall-normal and spanwise directions as x, y
and z respectively, and the corresponding components of velocity as u, v and w, the
governing Navier–Stokes equations for u and the pressure p are

∂tu+ (u · ∇)u=−∇p+ ν∇2u, (2.1)

together with the incompressibility condition ∇ · u= 0 and the boundary conditions

u(x, 0, z)= (0,−VS, 0), u(x, y→∞, z)= (U∞,−VS, 0). (2.2a,b)

The laminar flow profile of the ASBL,

uL(x, y, z)= (U∞(1− e−y/δ),−VS, 0), (2.3)

is an analytic solution to this system of equations. The laminar 99 % boundary layer
thickness, i.e. the value of y at which u(y)= 0.99U∞, is δ99 %= 4.605δ. The Reynolds
number for the ASBL is defined as

Re= U∞δ
ν
= U∞

VS
. (2.4)

In numerical simulation we enforce the upper boundary condition at a finite height
y=H, leading to a slight modification of the laminar profile,

u0(x, y, z)= (U∗(1− e−y/δ),−VS, 0), (2.5)

with U∗ = U∞/(1 − e−H/δ). This profile approaches uL and the computational flow
approaches the ASBL as H → ∞. At H = 20δ the value of δ99 % differs by only
10−6 from its value at H → ∞. Our simulations are performed with a parallel
version of the pseudospectral code channelflow (Gibson 2012), which simulates
the Navier–Stokes equations for incompressible fluids in rectangular domains with
two periodic directions and no-slip boundary conditions in the third direction. The
spatial discretization uses Fourier modes in the streamwise and spanwise directions
and Chebyshev polynomials in the wall-normal direction. Travelling-wave solutions
are found with a Newton–Krylov-hookstep algorithm (Viswanath 2007, 2009),
and predictor–corrector parameter continuation is performed by extrapolating three
known solutions at different parameter values and correcting with Newton’s method
afterwards.

To construct localized solutions of the ASBL, we perform a homotopy continuation
from known solutions of plane Couette flow, the spanwise-localized equilibria EQ7-1
and EQ7-2 of Gibson & Brand (2014). Choosing a coordinate system in which the
lower plate at y= 0 is motionless and the upper plate at y=H moves at speed U∞,
a homotopy from plane Couette to ASBL conditions can be defined by increasing VS

from 0 to a finite value such that H/δ� 1. Starting at plane Couette conditions with
U∞H/ν = 1600 and VS = 0, we increase VS, H and Lx and lower ν until we arrive at
ABSL flow conditions with Re=U∞/VS' 2000 and HVS/ν =H/δ= 20. Then, within
the ASBL we vary the Reynolds number by increasing ν and VS proportionally so
that δ = ν/VS remains constant. In what follows, all lengths, velocities and times are
normalized by δ,U∞ and δ/U∞.
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FIGURE 1. Bifurcation diagram of the FCS and WM solutions showing volume-averaged
cross-flow energy 〈Ecf 〉V = (1/V)

∫
V(v

2 + w2) dx dy dz as a function of Reynolds number.
Both solutions emerge as lower branches in saddle-node bifurcations. The two circles
indicate the states depicted in figure 2(c–f ).

3. Results

3.1. Spanwise-localized wall-mode and free-stream coherent structures in the ASBL
We successfully continued both EQ7-1 and EQ7-2 to ASBL conditions with
[Lx,H, Lz] at [4π, 20, 24π] and [5.5π, 20, 24π] respectively, and with a resolution of
[48, 121, 512] grid points. In the ASBL, these states are spanwise-localized travelling
waves similar to the free-stream and wall-mode travelling waves of DH14 respectively.
We henceforth refer to them as the free-stream coherent structure (FCS) and the wall
mode (WM) of the ASBL. After continuation into the ASBL, the FCS retains the
shift-reflect symmetry of EQ7-1,

[u, v,w](x, y, z)= [u, v,−w](x+ Lx/2, y,−z), (3.1)

and the WM retains the z-mirror symmetry of EQ7-2,

[u, v,w](x, y, z)= [u, v,−w](x, y,−z). (3.2)

These symmetries were enforced throughout the continuations.
Figure 1 shows the bifurcation diagram of the FCS and WM states in the ASBL

with Re as control parameter. The two states appear as lower branches in saddle-node
bifurcations at Re= 968 for the FCS and Re= 348 for the WM. The structure of the
velocity fields shows little variation with Re; i.e. the states do not change qualitatively
along the continuation. We choose to discuss them somewhat above their respective
bifurcation points, at Re= 1000 and Re= 400 respectively.

Figure 2 compares the ASBL states with their progenitor states in plane Couette
flow. Figure 2(a,b) shows EQ7-1 and EQ7-2 of plane Couette flow and (c,d) the
corresponding FCS and WM states obtained by continuation to the ASBL, with
vortices indicated by isosurfaces of λ2 (Jeong & Hussain 1995) in purple and velocity
fluctuations by isosurfaces of the streamwise velocity in blue and red (see the figure
caption for details). Figure 2(e, f ) shows the roll–streak structure of the FCS and WM
in the ASBL by isocontours of the downstream velocity (colours) and downstream
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FIGURE 2. (a,b) Two localized equilibria of plane Couette flow, (a) EQ7-1 and (b)
EQ7-2 from Gibson & Brand (2014) at U∞H/ν = 1600. The colours at the boundaries
of the box show the streamwise-averaged deviation of the streamwise velocity from the
laminar profile. Isocontours of the λ2 vortex detection criterion (Jeong & Hussain 1995)
are shown in purple. EQ7-1 has one pair of counter-rotating vortices, while EQ7-2 has
two pairs. High- and low-speed streaks are indicated by isocontours of the deviation of the
streamwise velocity from laminar flow: red for high-speed streaks (faster than laminar) and
blue for low-speed streaks. (c,d) The FCS and WM travelling-wave solutions of the ASBL
obtained by continuation from EQ7-1 and EQ7-2, with the same colour coding as in (a,b).
(e, f ) The roll–streak structures of the FCS and WM are indicated with isocontours of the
streamwise-averaged perturbation velocity u (colours) and streamwise-averaged vorticity ωx
(solid black for positive ωx, dotted for negative). The FCS shown in (c,e) at Re= 1000
consists of two weak high-speed streaks close to the wall and one low-speed streak that
extends far into the free stream. The vortices are localized at y' 12, far above the laminar
boundary layer. The WM shown in (d, f ) at Re= 400 contains two pairs of vortices, two
low- and three high-speed streaks, all within the laminar boundary layer, y 6 δ99 % ' 5.

vorticity (black). The first important observation is that both states are well localized
in the spanwise direction to within a range of |z|< 10, considerably smaller than the
boundaries of the computational domain at Lz/2= 12π' 38 (see also figure 3).
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FIGURE 3. Localization properties of the FCS (blue) and WM (green) in the (a) spanwise
and (b) wall-normal directions. Localization is indicated by the cross-flow energy Ecf =
v2+w2 averaged in x, y and x, z respectively. The exponential drop-off in cross-flow energy
with (a) z and (b) y confirms that the computational domain is sufficiently large. (b) The
peak of the cross-flow energy for the FCS is at y' 12, far above the laminar boundary
layer y 6 δ99 % ' 5, while for the WM the peak is within it.

Like EQ7-1 in plane Couette flow, the FCS in the ASBL consists of a single pair
of staggered and tilted counter-rotating vortices. These vortices are located at y' 12,
far above the laminar boundary layer thickness at δ= 1 or the laminar 99 % boundary
layer thickness at δ99 % = 4.6. Located below the vortices is a large low-speed streak,
i.e. a region where the streamwise velocity is slower than in the surrounding laminar
flow. The low-speed streak originates at the wall and ends below the vortices at y≈12,
creating a small shear from which the vortices draw energy. It should be noted that
the streak contour lines are nearly as dense near the vortices as at the wall, indicating
that the shear near the vortices is large, and that the large wall-normal extent of the
low-speed streak in figure 2(e) is not an artefact of the choice of contour levels. Thus,
a key property of the FCS is that its vortices are sustained not by the laminar shear
near the wall, but by shear far from the wall that the solution creates itself. The
vortices push fluid to the sides by linear advection, creating a weak but large-scale
circulation. This circulation pushes fluid from the free stream towards the wall on the
right and left sides of the vortices, creating two weak high-speed streaks, and pulls
fluid up in the centre, creating the low-speed streak. The speed of the travelling wave
is cFCS = 0.905, notably fast compared with the speed of turbulent spots in boundary
layers (which travel at roughly c= 2/3, Levin & Henningson (2007)) but consistent
with the 1− c∼ 100× O(Re−1) scaling estimated by DH14. It should be noted that
the laminar profile reaches this wavespeed (uL(y)= cFCS) at y= 2.35.

There are several notable similarities between the spanwise-localized FCS (figure 2)
and the spanwise-periodic free-stream coherent structure of DH14. Both are derived
from the EQ7 plane Couette solution of Gibson, Halcrow & Cvitanović (2009). The
shift-reflect symmetry (3.1) of the FCS is the symmetry that remains after breaking
the z-periodicity of the DH14 free-stream solution (their equation (3.4)). Comparison
of figure 2(e) with figure 3(e) of DH14 reveals similar structure and wall-normal
position of the counter-rotating vortices of the two solutions, despite the differences
in streamwise wavelength and Reynolds number (Lx = 4π, Re= 968 here versus Lx =
10π, Re = 80 000 in DH14). In both solutions, the slow-speed streaks extend farther
into the free stream than do the high-speed streaks, although for the DH14 free-stream
solution, there is a clear concentration near the wall and decay away from it, whereas
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the low-speed streaks of the FCS have a more uniform core that extends farther into
the free stream.

The WM in the ASBL is notably different from the FCS. The WM has two pairs
of staggered counter-rotating vortices much closer to the wall, below y= δ99 % = 4.65.
By linear advection (lift-up effect), the vortices create and sustain two low-speed and
three high-speed streaks which are also very near the wall. The vortices are slightly
tilted and inclined in the downstream direction, a pattern that is commonly observed
in wall-bounded shear flows (Adrian 2007). With all structures closely attached to
the wall and the pattern of two vortices leaning over a low-speed streak, the WM
is similar to the spanwise-localized edge states of Khapko et al. (2013), although in
the latter, the crossing of the vortices over the streak destabilizes the streak, leading
to breakup and reformation at a different position, and resulting in a time-dependent
relative periodic orbit solution. The speed of the WM travelling wave is cWM = 0.87,
a speed reached by the laminar profile at y= 2.04. The slower wavespeed of the WM
compared with the FCS is consistent with its closer proximity to the wall. The WM
is clearly related to the TW2-2 near-wall travelling wave of plane Poiseuille flow of
Gibson & Brand (2014), both in their origin from EQ7-2 and in the structure of their
vortices and streaks. How the WM relates to the wall mode of DH14 is less clear. The
latter was continued from a different solution of sliding Couette flow and has vorticity
concentrated much closer to the wall (comparing figure 2(d,e) with DH14 figure 3(b),
albeit at different parameter values).

At a broad level, the FCS and the WM are composed of the same typical flow
structures – streamwise streaks and downstream-oriented vortices – as almost all
known invariant solutions in shear flows. The WM displays the familiar interactions
known from the self-sustaining process (Hamilton, Kim & Waleffe 1995; Waleffe
1997; Schoppa & Hussain 2002) or the vortex–wave interaction of Hall & Sherwin
(2010). In the FCS, however, the strong vortices are not supported by a linear
instability of the underlying streak (DH14), as complex nonlinear interactions
dominate.

3.2. Dynamical properties of the free-stream coherent structure
In this section, we show that the dynamical evolution of the FCS is detached from
the wall. Figure 4 shows that the FCS has O(10) unstable modes (eigenvalues with
positive real part). The edge states of Khapko et al. (2013, 2014), in comparison, have
a single unstable eigenvalue by construction. Figure 5 shows the roll–streak structure
of the four leading unstable eigenmodes. These are the most dynamically relevant
eigenmodes, since they will dominate the evolution of trajectories that approach
the FCS transiently. The leading eigenmodes are concentrated around the vortical
structures of the FCS at y' 12, far from the wall. The linear dynamics near the FCS
is thus concentrated near the free-stream part of the solution, and the streaks that
extend close to the wall do not play a significant role.

To study the dynamics of transients near the FCS, we perturb the FCS slightly
and follow the time evolution of the perturbed initial condition. Here, we present
results obtained by rescaling the FCS by a factor of 1.01; the qualitative results
are unchanged if a small random perturbation is added instead. A movie in the
supplementary material available online at http://dx.doi.org/10.1017/jfm.2016.242
shows the evolution in time. Figure 6 shows space–time plots of the cross-flow
energy Ecf = v2 + w2 (Kreilos et al. 2013) as a function of y and as a function of
z, in each case averaged over the remaining two directions. No changes are visible
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FIGURE 4. The leading eigenvalues of the FCS at Re= 1000 with restriction to the shift-
reflect symmetry subspace (3.1). With an increased resolution of [64, 121, 576] grid points,
the leading 10 eigenvalues differ by 10−4, confirming that the solution is well converged.
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FIGURE 5. The four leading eigenmodes of the FCS. For complex eigenmodes, the real
part is shown. The left part of each plot shows isocontours of the streamwise-averaged
deviation of the streamwise velocity from laminar flow, the right part the isocontours
of the streamwise-averaged streamwise vorticity. For all eigenmodes, the streaks and roll
structures are localized in the free stream, close to the vortices of the FCS.

for the first 350 time units as the exponential amplifications of the linearly unstable
modes grow to large amplitudes. (This time of course depends on the magnitude of
the initial perturbation.) At t' 350, velocity perturbations near the vortical structures
at y ' 12 and z = 0 grow to amplitudes comparable to the FCS velocity field.
These perturbations spread in the y direction mostly towards the wall and in the
spanwise direction at roughly equal but slow propagation speeds. This slow spreading
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FIGURE 6. Space–time plots of the transition from FCS to turbulence at Re= 1000. The
averaged cross-flow energy Ecf for the growth of a small perturbation of the FCS is shown
as a function of time and the (a) wall-normal and (b) spanwise directions. The perturbation
remains small for approximately 350 advective time units. After t' 350, the perturbations
grow slowly in the spanwise direction and from the free stream towards the wall. When
perturbations reach the laminar boundary layer y 6 δ99 % at approximately t ' 800, they
strengthen and later spread rapidly along the wall, as shown by the increased slope of
the red area in (b).
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FIGURE 7. Time evolution of the FCS, illustrating the spreading of weak perturbations
towards the wall, followed by growth in energy and faster spreading in the spanwise
direction (t= 700 (a), 900 (b), 1100 (c), 1300 (d), 1500 (e), 1700 ( f )). The plots show
isocontours of the downstream velocity fluctuations in colours and isocontours of the
downstream vorticity in black.

continues until the fluctuations reach the laminar boundary layer at t ' 900. After
this, the fluctuations strengthen and energetic turbulence begins to spread along the
wall and also back into the free stream. The rate of spanwise spreading is notably
faster after the perturbations for t > 1000. This indicates that there are two different
mechanisms by which turbulence spreads from the FCS: a slow growth of weak
perturbations in the free stream followed by a faster more energetic growth fuelled
by the shear of the laminar boundary layer.

The observation that turbulence spreads rapidly once it reaches the wall is confirmed
by the plots of the roll–streak structure in figure 7, with six snapshots of the trajectory
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taken at equidistant time intervals 1t = 200. In (a), the state has not changed much
from the FCS and the vortical structures (black isocontours) are located high in the
free stream. In (b), the perturbations have grown to the laminar boundary layer, where
they are strongest. In (c–f ), the stronger perturbations spread in the spanwise direction
and start to grow in the wall-normal direction, creating a larger turbulent boundary
layer, in which disturbances would ultimately grow to reach the upper boundary of
the computational domain (Schlatter & Örlü 2011).

4. Conclusions

We have presented two travelling-wave solutions in the ASBL which are localized in
both the wall-normal and the spanwise directions. This is the first time that spanwise-
localized invariant solutions have been computed in a boundary layer. The wall-mode
solution is closely attached to the wall, while the free-stream solution has vortices
far from the wall, within the free stream. The vortices of the free-stream solution
cannot draw energy from the laminar boundary layer; instead they are supported by
a secondary shear gradient created by a large-scale low-speed streak which stretches
from the wall far into the free stream, convecting energy from the laminar gradient
into the free stream. The identification of this solution is thus an important step for
invariant solutions in free-stream turbulence, as it shows that the source of the shear
gradient is not necessarily the background laminar flow profile, but can be a dynamical
structure of the solution itself.

The localization of the unstable eigenfunctions of the free-stream solution and the
dynamical evolution of perturbations from it show that the active region of this state
is also detached from the wall. Perturbations of the free-stream solution grow first
around the vortical structures and then spread almost isotropically in the cross-stream
plane, similar to a turbulent spot in a wall-parallel plane. Once the strong laminar
shear at the wall is reached, the turbulent fluctuations sharply increase in magnitude
and spread rapidly along the wall.
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