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A doubly localized equilibrium solution of
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We present an equilibrium solution of plane Couette flow that is exponentially
localized in both the spanwise and streamwise directions. The solution is similar in
size and structure to previously computed turbulent spots and localized, chaotically
wandering edge states of plane Couette flow. A linear analysis of dominant terms
in the Navier–Stokes equations shows how the exponential decay rate and the
wall-normal overhang profile of the streamwise tails are governed by the Reynolds
number and the dominant spanwise wavenumber. Perturbations of the solution along
its leading eigenfunctions cause rapid disruption of the interior roll-streak structure
and formation of a turbulent spot, whose growth or decay depends on the Reynolds
number and the choice of perturbation.
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1. Introduction

Since the work of Nagata (1990) a large number of unstable nonlinear equilibrium,
travelling-wave and periodic-orbit solutions of the Navier–Stokes equations have been
computed for a variety of canonical flows, including pipe, channel, plane Couette and
square-duct flow. These invariant solutions demonstrate the feasibility and fruitfulness
of treating well-resolved direct numerical simulations as very-high-dimensional
dynamical systems, and they capture, in a precise and elemental form, a number
of important coherent flow structures and dynamical processes. Linear stability
analysis shows that these solutions have relatively few unstable modes, and that
the solutions and their low-dimensional unstable manifolds impose structure on the
dynamics of moderately turbulent flows. See Kawahara, Uhlmann & van Veen (2012)
for a recent review of this work. Most of this work has been done in the context of
canonical flows in small computational domains with periodic boundary conditions,
resulting in spatially periodic solutions that lie within dynamically invariant periodic

† Email address for correspondence: john.gibson@unh.edu

c© Cambridge University Press 2014 750 R3-1

mailto:john.gibson@unh.edu


E. Brand and J. F. Gibson

subspaces of the same flows on infinite domains. While small periodic ‘minimal flow
units’ are useful microcosms for studying turbulence, turbulence in extended domains
generally involves large numbers of interacting flow structures, whose dynamic
coupling presumably decreases with their separation. Additionally, the transition to
turbulence in extended domains occurs through the growth of turbulent spots or puffs,
consisting of localized patches of unsteady, complex flow within a background of
laminar flow (Wygnanski & Champagne 1973; Tillmark & Alfredsson 1992; Barkley
& Tuckerman 2005; Philip & Manneville 2011).

These considerations motivate the search for spatially localized invariant solutions
of flows in extended domains. Schneider, Marinc & Eckhardt (2010b) found the
first known localized solutions, a pair of spanwise-localized, streamwise-periodic
equilibrium and travelling-wave solutions of plane Couette flow, further investigated in
Schneider, Gibson & Burke (2010a). Avila et al. (2013) found a streamwise-localized
relative periodic orbit of pipe flow that closely resembles the transient turbulent puffs
of Hof et al. (2006). Deguchi, Hall & Walton (2013) and Gibson & Brand (2014)
independently found spanwise-localized forms of the periodic EQ7/HVS solution of
Gibson, Halcrow & Cvitanović (2009) and Itano & Generalis (2009). Gibson & Brand
(2014) also presented a number of spanwise-localized and wall-normal-localized
travelling waves of channel flow. Khapko et al. (2013) found spanwise-localized
relative periodic orbits of the asymptotic suction boundary layer, and Zammert &
Eckhardt (2014) found a spanwise- and wall-normal-localized periodic orbit of plane
Poiseuille flow.

This paper presents a span- and streamwise-localized equilibrium solution of plane
Couette flow, the first known invariant solution of the Navier–Stokes equations
localized in two homogeneous directions. The numerical procedure by which the
doubly localized solution was found is outlined in § 2. Properties of the solution are
presented in § 3, including its exponential localization, its global quadrupolar flow,
the geometrical structure of its rolls and streaks, its wall-normal overhang profile,
and the role of its instabilities in the transition to turbulence.

2. Computation of doubly localized solutions

The mathematical formulation and numerical methods are presented in detail in
Gibson & Brand (2014, GB14); here we present a brief outline. The Reynolds
number Re for plane Couette flow is defined in terms of half the relative wall
speed, the channel half-height, and the kinematic viscosity, so that the walls at
y = ±1 have velocity ±1 and the laminar flow solution is given by y ex. The total
velocity is expressed as a sum of the laminar flow and the deviation from laminar,
utot = y ex + u, and henceforth we refer to the deviation u = [u, v, w] as velocity.
With these assumptions u has zero Dirichlet boundary conditions at the walls, and
the non-dimensionalized Navier–Stokes equations take the form

∂u
∂t
+ y

∂u
∂x
+ v ex + u · ∇u=−∇p+ 1

Re
∇2u, ∇ · u= 0. (2.1)

The non-dimensionalized computational domain is [−Lx/2, Lx/2] × [−1, 1] ×
[−Lz/2, Lz/2] with periodic boundary conditions in the streamwise x and spanwise
z directions. Discretization is performed with standard Fourier–Chebyshev spectral
methods in space, third-order semi-implicit finite differencing in time, and 2/3-style
dealiasing. The computational domain and spatial discretization are specified in terms
of Lx× Lz and the collocation grid Nx×Ny×Nz. Equilibria are computed as solutions
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of f T(u)− u= 0, where f T is the time integration of (2.1) for a fixed time T , and
the discretized equations are solved with a Newton–Krylov-hookstep search algorithm
(Viswanath 2007, 2009). The choice for the T is determined by a practical balance
in the computational solution of the Newton-step equation: too small a value of T
results in weak viscous damping and slow convergence of the iterative generalized
minimum residual (GMRES) algorithm, but too large T reduces the distance ‖δu‖
over which the linearization f T(u+ δu)≈ f T(u)+ Df Tδu is accurate. We have found
that T =O(10) is a good balance for a wide variety of flow conditions and Reynolds
numbers. The software and the numerical data for the doubly localized solution
are available at www.channelflow.org (Gibson, Halcrow & Cvitanović 2008; Gibson
2014).

Initial guesses for the doubly localized solutions were produced by applying
streamwise windowing to the spanwise-localized forms of the EQ7 solution from
GB14, or two-dimensional windowing to the doubly periodic EQ7 solution from
Gibson et al. (2009). We used the same tanh-based windowing function as in GB14
equation (2.4), replacing z with x for a streamwise windowing function

W(x)= 1
4

(
1+ tanh

(
6(a− x)

b
+ 3
))(

1+ tanh
(

6(a+ x)
b

+ 3
))

. (2.2)

As noted in GB14, W(x) is even, smooth, monotonic in |x|, and close to unity for
the core region |x|< a, transitions smoothly to nearly zero over a< |x|< a+ b, and
approaches zero exponentially as |x| → ∞. The non-zero divergence of windowed
velocity fields W(x)u(x, y, z) is fixed by revising the wall-normal v component
to satisfy incompressibility. To create doubly localized initial guesses from doubly
periodic solutions, we applied the two-dimensional windowing function W(x)W(z)
with different length scales for the core and transition regions in the streamwise and
spanwise directions.

It was considerably more difficult to find doubly localized solutions from windowed
initial guesses than it was to find the spanwise-localized solutions of GB14. Not only
do the doubly localized solutions require doubly extended domains, the decay rate of
their tails is slower than for the spanwise-localized solutions (see § 3.3), and thus the
computational domains must be larger in both x and z. Search results were sensitive
both to the wavelengths of the underlying periodic or spanwise localized solution and
to the choice of windowing parameters. The search landscape for doubly localized
solutions is also vastly more complicated and more sensitive to spatial discretization,
with many non-zero local minima and many spurious solutions for under-resolved
discretizations. Lastly, doubly localized initial guesses tended to converge onto the
trivial solution u = 0 (laminar flow), with the search quickly settling onto streaky
flow with very little streamwise variation, and then reducing the magnitude of the
streaks to zero. Such streaks are dynamical transients that decay to laminar flow under
time evolution, but their decay is slow enough that they nearly satisfy the search
equation f T(u)− u= 0 for small T , thus attracting nearby guesses to a search path
that ultimately leads to u= 0.

To prevent the search algorithm from being fooled by such transients, we modified
the search equation to ( f T(u) − u)/(‖u‖3d − c) = 0, where ‖u‖3d is the energy
norm (see § 3.4) of the streamwise-varying portion of u and c is a parameter set to
some fraction of the value of ‖u‖3d for the initial guess. Our choices for underlying
periodicity and windowing parameters were determined by trial and error, guided by
the length scales that approximate solutions took on during the search. To mitigate
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FIGURE 1. A doubly localized equilibrium solution of plane Couette flow at Re= 240 in
a 200× 120 computational domain. (a) Streamwise velocity u in the y= 0 midplane. The
blue–red colour axis spans u∈ [−0.5, 0.5]. (b) Isosurfaces of swirling strength at s=±0.2
in green/blue, indicating swirling with clockwise/counter-clockwise orientation with respect
to the positive x axis. The dotted 40 × 16 subdomain is shown in detail in figure 2.
(c) Exponential localization, indicated by contours of y-integrated energy (see text).
Contour levels are set at 10−n for n = 0, 1, . . . , 5; the boundaries for 10−2–10−5

are labelled. (d) Quadrupolar y-averaged global flow, shown by a vector plot of
(ū, w̄)/

√
ū2 + w̄2, where ū, w̄ are the y averages of u, w. Note that the vector spacing

in this plot is too coarse to resolve rapid variations in the region surrounding the origin.

computational costs, we performed trial-and-error calculations in relatively small
domains with poor localization (80× 20 and O(10−1) tails at the perimeter) and then
extended solutions from successful searches to larger domains where localization
is more pronounced (200 × 200 with O(10−3) tails), using either continuation in
Lx, Lz or simply doubling the computational domain and reapplying windowing. For
doubly localized solutions we found that solutions were reliably robust to changes in
discretization when spectral coefficients were retained to O(10−7) in x, z and O(10−10)
in y. The solution presented in the following section is the most robust of several we
found, in that it converges quickly at higher spatial resolutions and continues smoothly
and easily in Lx, Lz and Re. This solution was found by applying two-dimensional
windowing to the doubly periodic EQ7 solution, refinement to an exact solution
by Newton–Krylov-hookstep, and extension to large domains by repeated doubling,
windowing and refinement.

3. Properties of the doubly localized solution

3.1. Global flow
Figure 1 shows a doubly localized equilibrium solution of plane Couette flow in
a 200 × 120 computational domain at Re = 240, discretized with 720 × 49 × 1024
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gridpoints. The solution has the symmetry group {e, σxy, σz, σxyz}, where

σxy : [u, v,w](x, y, z)→[−u,−v,w](−x,−y, z), (3.1)
σz : [u, v,w](x, y, z)→[u, v,−w](x, y,−z), (3.2)

σxyz = σxyσz and e is the identity. We use standard angle-bracket notation from group
theory to specify groups in terms of their generators, e.g. 〈σxy, σz〉 = {e, σxy, σz, σxyz}.
The doubly localized solution acquires 〈σxy, σz〉 symmetry from the windowing
breaking the symmetries of EQ7 that involve x and z translation, in the same manner
as EQ7-2 of GB14. The streamwise velocity in the y = 0 midplane, shown in
figure 1(a), is roughly comparable to the dynamically wandering doubly localized
edge state at Re = 400 shown in figure 5 of Schneider et al. (2010b). Both display
patterns of wavy streaks that are spanwise narrow and streamwise elongated, and
the significant non-laminar structure in both is confined to a roughly 100 × 20
subdomain of the flow. Figure 1(c) shows that the solution is exponentially localized
in both span- and streamwise directions, via contours of the y-integrated energy
e(x, z) = 1/2

∫ 1
−1 u · u dy. The fingers that extend along the x axis are due to

small-wavelength, exponentially decaying streaks of streamwise velocity (see § 3.3).
The deviation from elliptical contours near the edges of the computational domain
is an artefact of the periodicity of the domain, which, together with the solution
symmetries, induces even symmetry of e about x = ±Lx/2 and z = ±Lz/2. In larger
computational domains we have observed elliptical contours and exponential decay
over four orders of magnitude, with comparable decay rates in x and z.

Figure 1(d) shows the direction of the y-averaged flow (ū, w̄) by a vector plot
of (ū, w̄)/

√
ū2 + w̄2. Note the quadrupolar character of the y-averaged flow, similar

to figure 6 of Schumacher & Eckhardt (2001) and figure 3 of Duguet & Schlatter
(2013). The ū, w̄ flow is streamwise inward along z= 0 and spanwise outward along
x= 0, with a global circulation in each of the four quadrants. The alignment of the
y-averaged flow with the x and z axes also results from symmetry: σz symmetry
requires that u and w are even and odd in z, respectively, about z = 0, and σxy
symmetry requires that ū and w̄ are odd and even in x about x= 0. Periodicity in x
and z requires the same symmetries about the x=±Lx/2 and z=±Lz/2 edges of the
computational domain, so that the y-averaged flow aligns with these edges as well
(see Gibson et al. 2009).

3.2. Internal structure
The localized patterns of high- and low-speed streaks shown in figure 1(a) are
generated by the highly localized roll structure illustrated in figure 1(b). The latter
shows isosurfaces of signed swirling strength at s = ±0.2, approximately 1/3 of its
maximum value. Swirling strength is defined as the magnitude of the imaginary part
of the complex eigenvalues of the velocity gradient tensor ∇u (Zhou et al. 1999).
Signed swirling strength includes a ± sign indicating the orientation of swirling (Wu
& Christensen 2006); here the sign of the x component of the swirling axis when
oriented with the right-hand-rule. The swirling is highly localized: the magnitude of
swirling drops by a factor of roughly ten between the X-shaped isosurfaces and the
edges of the dotted box that marks a 40 × 16 subdomain. Figure 2 shows a detail
of the swirling strength in this subdomain with the same plotting conventions as
figure 1(b). The three perspective plots show an overall X-shaped structure composed
of two overlapping Λ-shaped vortices, whose legs swirl in opposite directions and tilt
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FIGURE 2. Three-dimensional structure of swirling strength. Isosurfaces of signed
swirling strength at s = ±0.2 in green/blue. The upper-right subfigure is a blow-up
of the x ∈ [−20, 20], z ∈ [−8, 8] subdomain in figure 1(b). Dotted lines show the
x-positions of the streamwise-normal cross-sections depicted in figure 3, with (a–g) at
x= {0, 2.5, 5, 7.5, 10, 15, 20} respectively. Views of the same structure (left) in y, z and
(bottom) in x, y.

in both the spanwise and wall-normal directions. Small, weaker vortices of opposite
sign flank the legs near their ends.

Figure 3 further illustrates the three-dimensional structure of the Λ-shaped vortices
and their relation to streamwise streaks. The flow in streamwise-normal cross-sections
is shown at x positions indicated by lines marked (a–g) in figure 2. The x= 0 plane in
(a) shows the y-symmetric tips of the two opposed Λ-shaped vortices, concentrated
near z = 0, each drawing midplane fluid towards the wall to form streaks. As x
increases in (b–d), the swirling of the legs grows in strength, size and spacing, and
moves from the lower wall towards the upper. By (e) the legs have reached the upper
wall and weakened, but the opposite-signed vortices that flank the tips of the legs
have grown to their greatest strength. These are positioned at about z=±3, and they
span the distance between the walls. By x= 20 in (g) swirling in both the legs and
the flanking vortices has died out and all that remains are the streamwise streaks.

3.3. Exponential decay and overhang of the streamwise streaks
The long streamwise tails of the doubly localized solution are dominated by a
spanwise-localized band of streaky streamwise velocity. Here we provide a linear
analysis that accounts for the exponential streamwise decay rate of the streamwise
tails and the form of their wall-normal overhang profile, effects observed in turbulent
spots by Lundbladh & Johansson (1991) and Duguet & Schlatter (2013). Direct
numerical evaluation of the magnitudes of different terms in the u component of
the Navier–Stokes equation (2.1) for the doubly localized solution shows that the
dominant terms in the streamwise tails are

yux = Re−1(uyy + uzz) (3.3)

where subscripts indicate differentiation. Although the solution is localized in z, a
good approximation for the decay rate and overhang profile can be obtained by
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FIGURE 3. Streamwise-normal cross-sections of velocity. Arrows indicate v, w velocity,
and colour indicates streamwise velocity u. The scaling of arrow length to v,w magnitude
is the same in all graphs. (a–g) show y, z planes at x = {0, 2.5, 5, 7.5, 10, 15, 20}; the
positions of these planes are marked with dotted lines in figure 2.

assuming a z-periodic solution of the form u(x, y, z) = û(y) exp(iγ z + µx/Re) with
γ set to match the dominant spanwise wavenumber observed in the streaky tails.
Substitution of this ansatz into (3.3) results in the ODE

û′′(y)− (γ 2 +µy) û(y)= 0, (3.4)

which has solutions

û(y)= aAi(γ 2µ−2/3 +µ1/3y)+ bBi(γ 2µ−2/3 +µ1/3y), (3.5)
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FIGURE 4. Streamwise decay of streaks. (a) The streamwise velocity u as a function of
spanwise coordinate z at x = 50 (within the streamwise tail) and at y = 0.5 (near the
peak of the overhang profile). (b) Coefficient µ of exponential streamwise decay rate
exp(µx/Re) as a function of spanwise wavenumber γ for the Airy-function approximation
of the tails. (c) Exponential decay of streamwise tails in the doubly localized solution at
Re=240 and 400 compared to the exp(µ(γ ) x/Re) prediction. ‖u‖∞ denotes the maximum
magnitude of u over (y, z) as a function of x. (d) Wall-normal overhang profile u(y) at
x= 50 and z= 0 compared to predicted û(y) (all curves normalized to unit amplitude).

where Ai and Bi are Airy functions. The boundary conditions û(±1)= 0 determine µ
and the relative values of a and b as a function of γ . Non-trivial solutions of (3.5)
require

Ai(γ 2µ−2/3 +µ1/3)Bi(γ 2µ−2/3 −µ1/3)−Ai(γ 2µ−2/3 −µ1/3)Bi(γ 2µ−2/3 +µ1/3)= 0
(3.6)

which we solve numerically for µ as a function of γ , choosing the negative solution
µ(γ ) closest to zero in order to find the solution with slowest streamwise decay.

Figure 4(b) shows µ as a function of γ . The γ ≈ 0 modes have the slowest
exponential decay, so as x→∞ we expect the tails to be dominated by the γ = 0
or fundamental γ = 2π/Lz mode. This behaviour is evident for the doubly localized
equilibrium at Re = 240. Figure 4(a) shows that the streamwise velocity at x = 50
has a wide slow streak in the region |z| < 10 with weaker small-scale z variation.
The power spectrum of this function has its strongest peak by nearly an order of
magnitude at the fundamental wavenumber γ = 2π/Lz ≈ 0.1. The decay rate µ(γ ) is
nearly constant for small γ , so for Re = 240 we take γ = 0 and find µ(0) ≈ −13.
Figure 4(c) shows good agreement between the predicted decay exp(−13x/240) and
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〈σxy, σz〉 〈σxy,−σz〉 〈−σxy, σz〉 〈−σxy,−σz〉
Re Pos. λr Max. λr Pos. λr Max. λr Pos. λr Max. λr Pos. λr Max. λr

240 2 0.0370 3 0.0414 3 0.0329 8 0.1283
300 4 0.0278 7 0.0314 5 0.0286 14 0.1028
340 6 0.0265 9 0.0635 7 0.0636 15 0.0952
360 8 0.0750 9 0.0751 7 0.0751 15 0.0920
380 8 0.0853 11 0.0854 12 0.0854 19 0.0892
400 17 0.0955 12 0.0958 16 0.0958 23 0.0960

TABLE 1. Instabilities of the doubly localized solution. The number of unstable
eigenfunctions (positive real part) and the real part of the most unstable eigenvalue are
given for each eigenfunction symmetry group and a range of Reynolds numbers.

that observed in the doubly localized solution. Figure 4(d) shows good agreement
between the predicted profile û(y) from (3.5) and the streamwise velocity profile u(y)
of the doubly localized solution at x= 50, z= 0.

However, the 1/Re factor in exp(µx/Re) means that small z-wavelength transients of
sufficient magnitude can persist and even dominate the tails for x� Re. Figure 4(a)
shows that at x = 50 the small-wavelength z variation for the Re = 400 solution is
much stronger than for Re = 240. The power spectrum of this z profile has peaks
of nearly equal magnitude at the fundamental mode γ ≈ 0.1 and at γ ≈ 1.5. From
what follows we determine that the exponential decay in ‖u‖∞ for the z-localized
structure is governed by the slightly less energetic γ ≈ 1.5 mode. Since µ(1.5)≈−19
from figure 4(b), the decay of this mode is exp(−19x/400), which is only a factor of
two smaller than the exp(−13x/400) decay of the γ = 0 mode over a length x≈ 50.
The match of this decay rate in figure 4(c) and the corresponding overhang function
in figure 4(d) to the doubly localized solution confirms that at Re = 400 the tails
for x < 80 are governed by the faster-decaying γ ≈ 1.5 mode. For x = O(Re) and
larger, beyond the limits of the present computational domain, we expect the large-γ
transients to die out, leaving the tails dominated by more slowly decaying small-γ
modes.

3.4. Stability and the evolution of unstable perturbations
In minimal flow units, the transition to turbulence is governed by invariant ‘edge state’
solutions whose stable manifolds form separatrices between states that quickly decay
towards laminar flow and states that become turbulent (Wang, Gibson & Waleffe
2007; Schneider et al. 2008). Efforts to develop a similar dynamical understanding of
transition in extended flows have lead to the computation of a number of localized
edge states, but to date these have either been invariant states localized in a single
homogeneous direction (Schneider et al. 2010b; Avila et al. 2013; Khapko et al.
2013; Zammert & Eckhardt 2014) or doubly localized but chaotically wandering
states without well-defined stable and unstable manifolds (Schneider et al. 2010b;
Duguet et al. 2012). The doubly localized invariant solution in this paper thus provides
a potential starting point for addressing spatio-temporal transition of extended flows
in dynamical terms. We focus on a 100× 30 domain, large enough to exhibit a range
of spatio-temporal behaviour (Philip & Manneville 2011), and 2306 Re6 400, above
the Re≈ 228 saddle–node bifurcation point of the doubly localized solution. Table 1
summarizes the properties of the leading unstable eigenfunctions, categorized by
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FIGURE 5. Evolution of unstable eigenfunctions. (a,d) show ‖u(t)‖ versus time t for
small perturbations of the doubly localized solution along its most unstable eigenfunctions,
at (a) Re = 380 and (d) Re = 400. Colour denotes the symmetries of the eigenfunction
perturbations: red for 〈σxy, σz〉 symmetric eigenfunctions, black for 〈σxy, −σz〉, blue
for 〈−σxy, σz〉, green for 〈−σxy, −σz〉, and cyan for perturbations along combinations
of eigenfunctions that break all symmetries. Solid lines indicate the most unstable
eigenfunction of each symmetry group, and dashed lines indicate the second-most unstable.
The midplane streamwise velocity of the most unstable perturbation at (b) t = 0 and (c)
t= 200 for Re= 380 and (e) t= 0 and (f ) t= 200 for Re= 400. The blue-red colour axis
spans u ∈ [−0.5, 0.5]; the horizontal and vertical axes are x and z.

symmetry group. The eigenfunctions v of the linearized dynamics about the doubly
localized solution are either symmetric (v = σv) or antisymmetric (v = −σv) for
each symmetry of the solution and thus have one of four symmetry groups: 〈σxy, σz〉,
〈σxy,−σz〉, 〈−σxy, σz〉 or 〈−σxy,−σz〉.

Figure 5 characterizes the temporal evolution u(t) = f t(u0 + δu) of the doubly
localized solution u0 perturbed along its most unstable eigenfunctions and along
combinations of eigenfunctions that break all symmetries. Perturbation magnitudes
were set to ‖δu‖/‖u0‖ = 10−2, where ‖u‖2 = 1/V

∫
V u · u dx, with V the volume of

the computational domain. For Re 6 360 (not shown) most perturbations produce a
short period (t< 200) of transient growth, but in all cases monotonic relaminarization
‖u(t)‖→ 0 begins by t≈ 500. At Re= 380, several perturbations produce long-lived
(t> 1000) turbulent spots, and at Re= 400 all perturbations do. Figure 5(b,c) shows
a typical decaying spot at Re= 380, and figure 5(e,f ) shows a typical growing spot
at Re= 400.

Unlike edge states, the doubly localized solution has a stable manifold of
co-dimension greater than 1 for all Reynolds numbers (even with the 〈σxy, σz〉
750 R3-10
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symmetry restriction), so the stable manifold cannot divide state space and form a
laminar/turbulent boundary by itself. However, the fact that some perturbations
from the doubly localized solution lead to laminar flow and some to turbulence
demonstrates that the solution lies on the laminar/turbulent boundary, and that portions
of its unstable eigenspace lie on either side of the boundary, for the approximate
range 360 . Re . 400. For Re 6 360, the solution lies on the laminar side of the
boundary, and for Re> 400, it lies on the turbulent side. In all cases the perturbations
rapidly generate fine-scale structure in the velocity field, which then either decays or
grows in a complex, long-term, and perturbation- and Reynolds-dependent manner.
Note that oblique perturbations (with σxyz ∈ 〈−σxy,−σz〉 symmetry) produce turbulent
spots with σxyz symmetry but little noticeable obliqueness (figure 5c,f ), though
eventually such spots can grow to fill the computational domain with a pattern of
tilted laminar/turbulent bands.

4. Conclusions

We have computed a doubly localized solution of plane Couette flow, which
consists of two symmetrically opposed Λ-shaped vortices whose legs swirl in opposite
directions and are tilted in both the spanwise and wall-normal directions. The solution
roughly resembles in size and internal structure the smallest sustained turbulent
spots simulated by Lundbladh & Johansson (1991) at similar Reynolds number
and the doubly localized, chaotically wandering edge states of Duguet, Schlatter &
Henningson (2009) and Schneider et al. (2010b). The streamwise exponential decay
and the form of the wall-normal overhang profile are well-approximated by the
solution of a linearized equation involving the leading terms of the Navier–Stokes
equations. Over a range of Reynolds numbers the solution lies on the boundary
between states that decay to laminar flow and those that grow to turbulence.
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