
Accepted for publication in J. Fluid Mech. 1

Visualizing the geometry of state space in
plane Couette flow

By J. F. G IBSON , J. HALCROW
AND P. CVITANOVI Ć
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Motivated by recent experimental and numerical studies of coherent structures in
wall-bounded shear flows, we initiate a systematic exploration of the hierarchy of un-
stable invariant solutions of the Navier-Stokes equations. We construct a dynamical,
105-dimensional state-space representation of plane Couette flow at Re = 400 in a small,
periodic cell and offer a new method of visualizing invariant manifolds embedded in
such high dimensions. We compute a new equilibrium solution of plane Couette flow
and the leading eigenvalues and eigenfunctions of known equilibria at this Re and cell
size. What emerges from global continuations of their unstable manifolds is a surpris-
ingly elegant dynamical-systems visualization of moderate-Re turbulence. The invariant
manifolds partially tessellate the region of state space explored by transiently turbulent
dynamics with a rigid web of symmetry-induced heteroclinic connections.

1. Introduction
In a seminal paper, Hopf (1948) envisioned the function space of Navier-Stokes ve-

locity fields as an infinite-dimensional state space, parameterized by viscosity, boundary
conditions, and external forces, in which each 3D fluid velocity field is represented as
a single point. Steady laminar states correspond to equilibria that are globally stable
for sufficiently large viscosity. As the viscosity decreases (Reynolds number increases),
turbulence sets in, represented by chaotic state-space trajectories. Hopf’s observation
that viscosity causes state-space volumes to contract under the action of dynamics led
to his key conjecture: that long-term, typically observed solutions of the Navier-Stokes
equations lie on finite-dimensional manifolds embedded in the infinite-dimensional state
space of allowed velocity fields. These manifolds, known today as ‘inertial manifolds,’ are
well-studied in the mathematics of spatio-temporal PDEs. Their finite dimensionality for
non-vanishing viscosity parameters has been rigorously established in certain settings by
Foias et al. (1985) and collaborators.

Since Hopf’s time, engineers and applied mathematicians have assembled a body of
empirical evidence that moderately turbulent flows exhibit organized, intrinsically low-
dimensional behavior for a variety of conditions (see Holmes et al. (1996), Panton (1997),
and Robinson (1991) for good overviews of this large body of work). The experiments
of Kline et al. (1967), for example, revealed spatially organized streaks in the turbulent
boundary layer. The numerical simulations of Kim et al. (1987) opened access to the
full 3D velocity field of channel flows and paved the way for more detailed studies of
organization in wall-bounded flows. The work of Hamilton et al. (1995) began a very
fruitful line of research; it identified from numerical simulations a remarkably well-defined,
quasi-cyclic process among streamwise streaks and vortices (or ‘rolls’) in low-Reynolds
number plane Couette flow. Waleffe (1995, 1997) further developed these ideas into a ‘self-
sustaining process theory’ that explains the quasi-cyclic roll-streak behavior in terms
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of the forced response of streaks to rolls, growth of streak instabilities, and nonlinear
feedback from streak instabilities to rolls.

The preponderance of recurrent, coherent states in wall-bounded shear flows suggests
that their long-time dynamics lie on low-dimensional state-space attractors. This has
motivated a number of researchers to model such flows with low-dimensional dynamical
systems. Aubry et al. (1988) (see also Holmes et al. (1996)) used ‘Proper Orthogonal De-
composition’ [POD] of experimental data and Galërkin projection of the Navier-Stokes
equations to produce low-order models of coherent structures in boundary-layer turbu-
lence. These models reproduce some qualitative features of the boundary layer, but the
quantitative accuracy and the validity of simplifying assumptions in their derivation are
uncertain (Zhou & Sirovich (1992); Sirovich & Zhou (1994); Gibson (2002)). POD models
for plane Couette were developed by Smith et al. (2005).

Another class of low-order models of plane Couette flow derives from the self-sustaining
process discussed above (Dauchot & Vioujard (2000); Moehlis et al. (2004, 2005); Man-
neville (2004); Skufca (2005)). These models use analytic basis functions explicitly de-
signed to represent the streaks, rolls, and instabilities of the self-sustaining process, com-
pared to the numerical basis functions of the POD, which represent statistical features
of the flow. They improve on the POD models by capturing the linear stability of the
laminar flow and saddle-node bifurcations of non-trivial 3D equilibria consisting of rolls,
streaks, and streak undulations. The work of Skufca et al. (2006), based on a Schmiegel
(1999) 9-variable model, offers an elegant dynamical systems picture, with the stable
manifold of a periodic orbit defining the basin boundary that separates the turbulent
and laminar attractors at Re < 402 and the stable set of a higher-dimensional chaotic
object defining the boundary at higher Re. However, these models share with POD mod-
els a sensitive dependence on modeling assumptions and uncertain quantitative relations
to fully-resolved simulations. A systematic study of the convergence of POD/Galërkin
models of plane Couette flow to fully-resolved simulations indicates that dimensions
typical in the literature (10-102) are orders of magnitude too low for either short-term
quantitative prediction or reproduction of long-term statistics (Gibson (2002)).

The lack of quantitative success in low-dimensional modeling motivates yet another
approach: the calculation of exact invariant solutions of the fully-resolved Navier-Stokes
equations. The idea here is to bypass low-dimensional modeling and to treat fully-resolved
CFD algorithms directly as very high-dimensional dynamical systems. Nagata (1990)
computed a ‘lower-branch’ and ‘upper-branch’ pair of nontrivial equilibrium solutions
to plane Couette flow by continuation and bifurcation from a wavy vortex solution of
Taylor-Couette flow. Starting with physical insights from the self-sustaining process, Wal-
effe (1998, 2001, 2003) generated, ab initio, families of exact 3D equilibria and traveling
waves of plane Couette and Poiseuille flows for a variety of boundary conditions and Re
numbers, using a 104-dimensional Newton search and continuation from non-equilibrium
states that approximately balanced the mechanisms highlighted by the self-sustained
process. As noted in Waleffe (2003), these solutions, and Clever & Busse (1992)’s equi-
libria of plane Couette flow with Rayleigh-Benard convection, are homotopic to the Na-
gata equilibria under smooth transformations in the flow conditions.† Faisst & Eckhardt
(2003) and Wedin & Kerswell (2004) carried the idea of a self-sustaining process over to
pipe flow and applied Waleffe’s continuation strategy to derive families of traveling-wave
solutions for pipes. Traveling waves for plane Couette flow were computed by Nagata

† We have confirmed that the upper-branch solutions of Nagata and Waleffe are the same by
continuing Waleffe’s solution to Nagata’s cell size and Reynolds number and comparing plots of
the velocity field to figure 8 of Nagata (1990).
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(1997) using a continuation method. Later, traveling waves for pressure-driven channel
flow were obtained by Itano & Toh (2001) with a shooting method. The first short-period
unstable periodic solutions of Navier-Stokes were computed by Kawahara & Kida (2001).
Recently, Viswanath (2007) has computed relative periodic orbits (orbits which repeat
themselves with a translation) and further periodic orbits of plane Couette flow that
exhibit break-up and reformation of roll-streak structures.

The exact solutions described above turn out to be remarkably similar in appearance
to coherent structures observed in DNS and experiment. Waleffe (2001) coined the term
‘exact coherent structures’ to emphasize this connection. The upper-branch solution, for
example, captures many statistical features of turbulent plane Couette flow and appears
remarkably similar to the roll-streak structures observed in direct numerical simulations
(compare figure 1(b) to figure 3(c)). Waleffe (2003) showed that the upper and lower-
branch equilibria appear at lowest Reynolds number with streak spacing of 100+ wall
units, an excellent match to that observed in Kline et al. (1967). The periodic orbits of
Kawahara & Kida (2001) and Viswanath (2007) appear to be embedded in plane Couette
flow’s natural measure, and most of them capture basic statistics more closely than the
equilibria (see figure 2). In pipe flow, high speed streaks that match the traveling-wave
solutions in cross-section have been observed in beautiful experiments using stereoscopic
particle image velocimetry (Hof et al. (2004); Busse (2004); Barenghi (2004)). Li & Gra-
ham (2007) found that the deformations of exact coherent solutions of plane Poiseuille
flow due to addition of viscoelasticity are very similar to experimentally observed changes
in turbulent structures due to polymer additives. Additionally, there is preliminary ev-
idence that the instabilities of these exact solutions play important dynamic roles. The
relevance of steady solutions to sustained turbulence and transition to turbulence is
discussed in Waleffe (2003); Jiménez et al. (2005); Schneider et al. (2007). The stable
manifold of the lower-branch solution appears to control an important portion of the
basin boundary between the turbulent and laminar attractors (Waleffe & Wang (2005);
Wang et al. (2007); Viswanath (2008)). Kerswell & Tutty (2007)’s numerical simulations
suggest that the unstable manifolds of lower-branch traveling waves act as similar bound-
aries in pipe flow, and that turbulent fields make occasional visits to the neighborhoods
of traveling waves.

Together, these results form a new way of thinking about coherent structures and tur-
bulence: (a) that coherent structures are the physical images of the flow’s least unstable
invariant solutions, (b) that turbulent dynamics consists of a series of transitions between
these states, and (c) that intrinsic low-dimensionality in turbulence results from the low
number of unstable modes for each state (Waleffe (2002)). The long-term goals of this
research program are to develop this vision into quantitative, predictive description of
moderate-Re turbulence, and to use this description to control flows and explain their
statistics. Much of this has already been accomplished in the simpler context of the
Kuramoto-Sivashinsky equation (Christiansen et al. (1997); Cvitanović et al. (2008)).

In this paper, we take a few steps towards realizing these goals in the case of plane
Couette flow in a small periodized cell. In § 2 we review the physical characteristics and
symmetries of plane Couette flow. § 3 discusses the computation of invariant solutions
and their eigenvalues and presents (a) a new equilibrium solution of plane Couette and
(b) the linear stability analysis of this and the lower and upper-branch equilibria. These
computations set the stage for the main advance reported in this paper, visualization and
exploration of the state space of moderate-Re plane Couette flow, undertaken in § 4. The
combination of equilibrium solutions, linear stability analysis, and state-space portraiture
reveals previously unseen dynamical connections among the invariant solutions of plane
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Couette flow. Particularly beautiful and unexpected are the discrete symmetry enforced
interrelations between unstable manifolds manifest in figure 5-figure 9.

2. Plane Couette flow
Plane Couette flow is comprised of an incompressible viscous fluid confined between

two infinite parallel plates moving in-plane at constant velocities. We take the length
scale L to be half the distance between the walls and the velocity scale U to be half the
relative wall velocity. After nondimensionalization and absorption of fluid density into
the pressure field, the Navier-Stokes equations take the form

∂u
∂t

+ u ·∇u = −∇p +
1
Re

∇2u , ∇ · u = 0 ,

where the Reynolds number is defined as Re = UL/ν and ν is the kinematic viscosity of
the fluid. The plates move at speed ±1 along the ‘streamwise’ x-axis, the direction normal
to the plates is the ‘wall-normal’ y-axis, y ∈ [−1, +1], and the in-plane z-axis, normal
to the plate velocity, is referred to as ‘spanwise.’ The x, y, z unit vectors are x̂, ŷ, ẑ. (We
use boldface to indicate vectors in three spatial dimensions.) The velocity field u has
streamwise, wall-normal, and spanwise components u = [u, v, w]; the velocity at point x
and time t is u(x, t) = [u, v, w](x, y, z, t). The no-slip boundary conditions at the walls
are u(x,±1, z) = [±1, 0, 0]. As a simplifying assumption, we replace the infinite x and
z directions with a periodic cell of lengths Lx and Lz, or equivalently, the fundamental
wavenumbers α = 2π/Lx and γ = 2π/Lz. We denote the periodic domain of the cell by
Ω = [0, Lx]× [−1, 1]× [0, Lz] or simply Ω = [Lx, 2, Lz]. We assume that the spatial mean
of the pressure gradient is zero, i.e. there is no pressure drop across the cell in x or z.

Replacing u with u+y x̂ recasts Navier-Stokes in terms of the difference of the velocity
from laminar flow:

∂u
∂t

+ y
∂u
∂x

+ v x̂ + u ·∇u = −∇p +
1
Re

∇2u , ∇ · u = 0 . (2.1)

The difference u satisfies Dirichlet conditions at the walls, u(x,±1, z) = 0. Henceforth
we refer to the difference u as ‘velocity’ and u + y x̂ as ‘total velocity,’ and we take (2.1)
as the Navier-Stokes equations for plane Couette flow.

Plane Couette flow is the simplest of all shear flows, and it is here that roll-streak
structures take their simplest form. For moderate values of Re, the rolls span the full
distance between the walls, whereas in channel and boundary-layer flows such structures
are bounded by a wall on one side and open flow on the other. Figure 1 shows two typical
velocity fields from a simulation in the ‘HKW’ cell Ω = [7π/4, 2, 6π/5] at Re = 400.
The numerical simulations of Hamilton et al. (1995) indicate that this is roughly the
smallest cell and Reynolds number that sustains turbulence for long time scales. Roll-
streak structures are evident, particularly in figure 1(b). The rolls circulate high-speed
fluid towards the walls and low-speed flow away; the resulting streaks of high-speed fluid
near the walls dramatically increase drag compared to laminar flow. For example, the
power input needed to maintain constant wall velocity in plane Couette flow increases by
a factor of three if the flow goes turbulent (see figure 2 (e)). The practical importance of
roll-streak dynamics derives from their role in momentum transfer and turbulent energy
production and their generic occurrence in wall-bounded shear flows.

Except for figure 1 and parts of figure 2, the results in this paper are for Re = 400
and Ω = [2π/1.14, 2, 4π/5], first studied in Waleffe (2002). This cell matches the HKW
cell [7π/4, 2, 6π/5] closely in x (7/4 ≈ 2/1.14). The z length scale Lz = 4π/5 was chosen
as a compromise between Lz = 6π/5 of the HKW cell (which sustains turbulence for
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(a) (b)

Figure 1. Snapshots of plane Couette turbulence at Re = 400. Total velocity fields
(u, v, w) in a periodic cell of size Ω = [7π/4, 2, 6π/5] (Hamilton et al. (1995)) are shown with
arrows for in-plane velocity and a colormap for the streamwise velocity component u: red/blue
indicates u = ±1; green, u = 0. The upper wall at y = 1 and the upper half of the fluid is cut
away to show the velocity in the y = 0 midplane. The two snapshots shown are different instants
from a simulation initiated with a random pertubation, selected to show (a) minimum and (b)
maximum organization in the turbulent field. In particular, (b) resembles the upper-branch
equilibrium shown in figure 3(c).

long time scales but has equilibria only with doubled period in z) and its first harmonic
Lz = 3π/5 (which has equilibria at the fundamental harmonic, but tends to decay to
laminar flow). Simulations for these parameters tend to decay to the laminar state within
several hundred nondimensionalized time units L/U , but the transient dynamics serves
well to illustrate our invariant manifolds construction. Whether a given cell size sustains
turbulence indefinitely is a subtle dynamical issue: Schmiegel & Eckhardt (1997) and
Schmiegel (1999) observe only chaotic transients in their studies.

2.1. Energy transfer rates
The kinetic energy density E, the bulk viscous dissipation rate D, and the wall-shear
power input I of the total velocity field of plane Couette flow are given by

E(t) =
1
V

∫
Ω

dx
1
2
|u + y x̂|2 (2.2)

D(t) =
1
V

∫
Ω

dx |∇× (u + y x̂)|2 (2.3)

I(t) = 1 +
1

2A

∫
A

dx dz

(
∂u

∂y

∣∣∣
y=1

+
∂u

∂y

∣∣∣
y=−1

)
, (2.4)

where V = 2LxLz and A = LxLz. The normalizations are chosen so that D = I = 1
for laminar flow and Ė = I − D. Figure 2(e) shows I vs. D for a turbulent trajectory
and several invariant solutions. Equilibria and relative equilibria must fall on the line
I = D where these two quantities are in balance. The energy input and dissipation rates
must also balance in averages over a single period of a periodic orbit or relative periodic
orbit p, Dp = 1/Tp

∫ Tp

0
dt D(t) = 1/Tp

∫ Tp

0
dt I(t) = Ip, as well as for long-term averages,

I(t) = D(t).
We note that the turbulent trajectory in figure 2 stays clear of the much lower dissi-

pation rates DLB = 1.43 and DNB = 1.45 of the equilibrium solutions uLB and uNB (see
§ 3.2), so these equilibria are far from the turbulent attractor. The energy, the dissipation
rate, and mean and RMS velocity profiles of the Nagata (1990) upper-branch equilibrium
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Figure 2. (a,b) Spatial-mean and spatial-RMS total velocity profiles of the upper-branch equi-
librium (symbols) in Ω = [2π/1.14, 2, 4π/5] against temporal mean and RMS profiles for sus-
tained turbulent DNS data in [7π/4, 2, 6π/5] (lines). Re = 400 for both. (c,d) Temporal mean
and RMS velocity profiles for the T = 87.89 periodic orbit of Viswanath (2007) for [7π/4, 2, 6π/5]
and Re = 400 (symbols), against the same turbulent data shown in (a,c). In (a,c), mean values
of u are marked with ◦; in (b,d) RMS values of u, v, w are marked with ◦,4, �. (e) Wall-shear
power input I versus viscous dissipation D for a typical trajectory of sustained turbulence in the
[7π/4, 2, 6π/5] cell (lines), mean dissipation rates of turbulent flow D = 2.88 (4), the T = 87.89

periodic orbit D = 2.94 (◦), and the upper-branch equilibrium DUB = 3.04 (�). The laminar
equilibrium dissipation rate is D = 1 (not shown).

and most of the periodic orbits of Kawahara & Kida (2001) and Viswanath (2007) are
numerically close to the long-term turbulent averages. This suggests that the solutions
play an important role in turbulent dynamics, but turbulent statistics do not simply fol-
low from the properties of a few solutions. On the contrary, periodic orbit theory shows
that the statistics of dynamical systems are given by sums over hierarchies of periodic
orbits, with weights determined by the orbits’ lengths and stabilities (Cvitanović et al.
(2007)).

2.2. Symmetries
Plane Couette flow is invariant under two discrete symmetries σ1, σ2 and a continuous
two-parameter group of translations τ(`x, `z):

σ1 [u, v, w](x, y, z) = [u, v,−w](x, y,−z)
σ2 [u, v, w](x, y, z) = [−u,−v, w](−x,−y, z) (2.5)

τ(`x, `z)[u, v, w](x, y, z) = [u, v, w](x + `x, y, z + `z) .

The Navier-Stokes equations and boundary conditions are invariant under any symmetry
s in the group generated by these symmetries: ∂(su)/∂t = s(∂u/∂t).

The Nagata (1990) lower and upper-branch equilibria (hereafter referred to as uLB

and uUB) are invariant under action of the subgroup S = {1, s1, s2, s3}, where s1 =
τ( 1

2Lx, 0) σ1, s2 = τ( 1
2Lx, 1

2Lz) σ2, and s3 = s1s2. That is, suLB = uLB and suUB = uUB

for s ∈ S. The s1 and s2 symmetries are often called the ‘shift-reflect’ and ‘shift-rotate’
symmetries. The group actions on velocity fields u are given by

s1 [u, v, w](x, y, z) = [u, v,−w](x + 1
2Lx, y, −z)

s2 [u, v, w](x, y, z) = [−u,−v, w](−x + 1
2Lx, −y, z + 1

2Lz) (2.6)

s3 [u, v, w](x, y, z) = [−u,−v,−w](−x, −y, −z + 1
2Lz) .

In a rough sense, this subgroup is important to plane Couette dynamics because combin-
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ing half-cell shifts with σ1 and σ2 allows the largest and thus least dissipative structures
possible in the given periodic cell.

We denote the space of velocity fields that satisfy the kinematic conditions of plane
Couette flow by

U = {u | ∇ · u = 0, u(x,±1, z) = 0, u(x, y, z) = u(x + Lx, y, z) = u(x, y, z + Lz)}
(2.7)

and the S-invariant subspace (Golubitsky & Stewart (2002)) of U by

US = {u ∈ U | sju = u , sj ∈ S} (2.8)

US is a dynamically invariant subspace of U since S symmetry is preserved by evolution
under the Navier-Stokes equations.

A second important subgroup is the group of half-cell translations T = {1, τx, τz, τxz},
where τx = τ( 1

2Lx, 0), τz = τ(0, 1
2Lz), and τxz = τxτz. In general, the continuous transla-

tion τ(`x, `z) maps each state u into a 2-torus of dynamically equivalent states, and the
group {1, σ1, σ2, σ1σ2} maps these into four dynamically equivalent 2-tori. For u ∈ US ,
these four tori coincide, and this single torus intersects US at the four points τu, τ ∈ T .
(Since elements of T commute with those of S, u ∈ US implies τu ∈ US for τ ∈ T .)
For example, the upper-branch equilibrium uUB appears within US in four distinct half-
cell translations, namely uUB, τxuUB, τzuUB, and τxzuUB. In effect, restriction to the US

subspace simplifies analysis of plane Couette dynamics by reducing the dynamical equiv-
alence class of each velocity field from a set of four 2-tori to a set of four points. In what
follows we focus mostly on dynamics within US .

3. Invariant solutions of plane Couette
Let F(u) represent the Navier-Stokes equation (2.1) for u ∈ U (2.7) and f t its time-t

forward map

∂u
∂t

= F(u) , f t(u) = u +
∫ t

0

dτ F(u) . (3.1)

F(u) admits of invariant solutions of the following types:

F(uEQ) = 0 equilibrium or steady state uEQ

F(uTW) = −c ·∇uTW relative equilibrium or traveling wave uTW, velocity c

fTp(up) = up periodic orbit p of period Tp

fTp(up) = sp up relative periodic orbit, period Tp, symmetry sp . (3.2)

Relative equilibria are allowed due to the continuous translation symmetry τ(`x, `z);
boundary conditions require c · ŷ = 0. The symmetry sp for a relative periodic orbit
is an element of the group generated by (2.5). We expect to see many more relative
periodic orbits than periodic orbits because a trajectory that starts on and returns to
a given torus is unlikely to intersect it at the initial point, unless forced to do so by a
discrete symmetry. This indeed is the case for other PDEs with continuous symmetries,
such as the complex Ginzburg-Landau equation (López et al. (2006)) and the Kuramoto-
Sivashinsky equation (Cvitanović et al. (2008)). Restriction to the S-invariant subspace
US defined in (2.8) eliminates relative equilibria and restricts relative periodic orbits to
those with sp = τ ∈ T , the group of half-cell translations. After 2Tp or 4Tp these relative
orbits will close to form true periodic orbits.
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3.1. Finite representation

Computing the exact solutions and stability modes of plane Couette flow requires a
finite but fully-resolved discretization of the constrained partial differential and integral
equations represented by (3.1) and (3.2). We investigated two approaches to discrete
representation. In the first approach the vector u ∈ Rd was formed by breaking the
complex spectral expansion coefficients of a CFD algorithm into real and imaginary
parts and then selecting from these a set of linearly independent real-valued variables.
Our CFD algorithm, channelflow.org, is based on the velocity-pressure algorithm of
Kleiser & Schumann (1980)) with expansions

u(x, t) =
J∑

j=−J

K∑
k=−K

L∑
`=0

3∑
m=1

ûjklm T`(y) e2πi(jx/Lx+kz/Lz) x̂m , (3.3)

where the T` are Chebyshev polynomials and (x̂1, x̂2, x̂3) = (x̂, ŷ, ẑ) unit vectors. The
algorithm employs a Chebyshev tau method and tau correction for enforcement of in-
compressibility and boundary conditions. Computations in this paper used a third-order
semi-implicit backwards-differentiation time-stepping, dealiasing in the x, z transforms,
and rotational calculation of the nonlinear advection term. The expansion (3.3) retains
a number of linearly dependent terms, due to complex symmetries and the run-time
enforcement of the incompressibility and boundary conditions. Intimate knowledge of
the CFD algorithm and careful accounting is required to determine the precise number
of linearly independent coefficients and a self-consistent method of converting back and
forth between the state-space vector u and the expansion coefficients of u. For our CFD
algorithm and an Nx × Ny × Nz grid, d is slightly less than 2Nx(Ny − 2)Nz. The ac-
counting for velocity-vorticity algorithms is somewhat simpler since incompressibility is
eliminated at the outset. For further technical details, please refer to Viswanath (2007),
Halcrow (2008), and documented codes at channelflow.org, or contact the authors.

In the second approach, we explicitly constructed a set of orthonormal, divergence-free,
no-slip basis functions Φn(x) and formed the state-space vector u from the coefficients
ûn of the expansion u(x) =

∑d
n=1 ûnΦn(x). This approach produces a mathematically

simpler representation, in that (1) all constraints are subsumed into the basis and elimi-
nated from further consideration, (2) an explicit ODE of the form u̇ = F (u) and quadratic
in the coefficients ûn can be derived via Galërkin projection of Navier-Stokes, and (3)
with proper normalization of the basis functions, the L2 norm of the state-space vector
u ∈ Rd is the same as the L2 energy norm of the velocity field u. The downside is that
the formulation of the basis set is complicated, and it requires extra computation for
orthogonalization and transforms between state-space vectors and the CFD representa-
tion. We found no practical advantages to the orthonormal basis. The results reported
here were computed using CFD expansion coefficients for the state-space vector u.

The choice of discretization u ∈ Rd and CFD algorithm implicity defines a d-dimensional
dynamical system u̇ = F (u). Viswanath (2007) showed that invariant solutions and linear
stability of F can be computed efficiently with Krylov subspace methods and numeri-
cal evaluation of the finite-time map fT : u(t) → u(t + T ) with the CFD algorithm.
Equilibria may computed as solutions of f t(u) − u = 0 for fixed t; and periodic orbits
as solutions of the same equation with varying t. Viswanath’s algorithm for computing
these solutions involves a novel combination of Newton descent, GMRES solution of the
Newton equations, and ‘trust-region’ limitation to the magnitude of the Newton steps.
The results reported in this paper, however, used straight Newton-GMRES search, with
no trust region modification. We will often discuss equilibria and linear stability in terms
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(a) (b) (c)

Figure 3. Equilibrium solutions of plane Couette flow. Total velocity fields of (a) uLB,
the lower-branch equilibrium, (b) uNB, the ‘new’ equilibrium, and (c) uUB, the upper-branch
equilibrium. [Lx, Ly, Lz] = [2π/1.14, 2, 4π/5] and Re = 400. The plotting conventions are the
same as in figure 1.

of the flow F , with the understanding that the computations are performed using the
finite-time map fT .

3.2. Equilibria
The starting points of our exploration of plane Couette state space are the Nagata (1990)
and Waleffe (2003) uUB and uLB equilibrium solutions of plane Couette flow for Re = 400
and [Lx, Ly, Lz] = [2π/1.14, 2, 4π/5], provided in numerical form by Waleffe. These fields
employed an elliptical truncation of spectral coefficients (requiring j2/J2 + k2/K2 +
l2/L2 ≤ 1 for expansions of the form (3.3)) on a 32× 34× 32 grid. We use Viswanath’s
Newton-GMRES algorithm to increase the resolution to a rectangular truncation (|j| ≤
J, |k| ≤ K, l ≤ L) on a 32× 35× 32 grid. The dimensionality of this finite representation
is d = 61 506. These recomputed solutions satisfy (3.2)

F (u) = 0 , u = f t(u) (3.4)

in discrete form. At this spectral resolution, the Newton-GMRES search can reduce the
residual of the discrete equilibrium equation to 10−14, but the truncated coefficients are
of the order 10−6, and the residual increases to the same level when the given solution is
integrated at higher resolution. The accuracy of the equilibrium solutions is thus roughly
single-precision.

Figure 3 shows the uLB and uUB equilibria as velocity fields, along with a third equilib-
rium uNB(‘N’ for ‘new’) that was discovered in the course of this investigation (Halcrow
et al. (2008)). This equilibrium was found by initiating Newton-GMRES searches for
solutions of the equilibrium equations from points within the unstable manifolds of uLB

and uUB(see § 4). A portion of the one-dimensional unstable manifold of uLB, shown in
figure 5, appears to be strongly influenced by a complex unstable eigenvalue of uNB. Ini-
tial guesses along this portion of the uLB unstable manifold converge rapidly to uNB, to
several digits of accuracy in a few Newton steps.

3.3. Linear stability of equilibria
Dynamics in the neighborhood of an equilibrium solution are governed by the linear
stability matrix

[DF ]mn =
∂Fm

∂un
(3.5)

Figure 4 shows the leading (most unstable) eigenvalues of uLB, uNB, and uUB, computed
with Arnoldi iteration (Viswanath (2007)). Figure 4(a) shows all computed eigenvalues;
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Figure 4. Leading uLB, uNB, uUB eigenvalues in (a) the full space U (b) the S-invariant
subspace US . Numerical values are listed in tables 1 and 2.

figure 4(b) shows those within the S-invariant subspace US . The eigenfunctions v of DF
at the equilibria are either symmetric, sv = v, or antisymmetric, sv = −v for s ∈ S,
since s2 = 1. Thus, in general, the dynamics carries small perturbations of these equilibria
into the full space U. The uLB equilibrium has a single unstable eigenvalue (Wang et al.
(2007)). Within US , the uUB equilibrium has a single unstable complex pair, and uNB has
one unstable real eigenvalue and one unstable complex pair.

The Arnoldi eigenvalues are accurate to 10−6, as determined by repeated calculations
with different random initial vectors, and comparison of Arnoldi computations to an-
alytically known eigenvalues of the laminar equilibrium. This level of accuracy results
from the use of off-center finite-differencing to estimate differentials of the flow in the
Arnoldi iteration: Df t|uv = (f t(u + εv) − f t(u))/ε + O(ε), with ε = 10−7. Tables of
numerical eigenvalues and their symmetries are given in §A (table 1 and 2) and at
channelflow.org.

3.4. Linearized evolution
Let λ, vEQ be an eigenvalue, eigenvector solution of DF |uEQv = λ v at the equilibrium
uEQ.† Then the linearized state-space dynamics v̇ = DF |uEQv about uEQ has solution
v(t) = eλtvEQ, and the initial condition u(0) = uEQ + ε vEQ with ε |vEQ| ¿ 1 evolves as

u(t) = uEQ + ε vEQ eλt + O(ε2) . (3.6)

The linearized evolution of the velocity field u(x, t) can be derived by reconstructing the
velocity fields from the corresponding state-space vectors, as discussed in § 3.1. Small
perturbations about uEQ along the eigenfunction vEQ evolve as

u(x, t) = uEQ(x) + εvEQ(x) eλt + O(ε2) . (3.7)

Complex eigenvalues and eigenvectors must be recast in real-valued form prior to
conversion to velocity fields, since each element of the state-space vector v is the real or
imaginary part of a complex-valued spectral coefficient in a CFD expansion such as (3.3).
Let λ

(n,n+1)
EQ = µ(n) ± iω(n) be a complex eigenvalue pair and v

(n,n+1)
EQ = v

(n)
r ± iv

(n)
i the

corresponding complex eigenvectors. Then (dropping superscripts) the initial condition
u(0) = uEQ + ε vr evolves as a real-valued spiral

u(t) = uEQ + ε (vr cos ωt− vi sin ωt) eµt + O(ε2) . (3.8)

† We indicate particular invariant solutions with subscripts, such as uLB or uLB for the low-
er-branch equilibrium solution. The nth eigenvalue is λ(n), n = 1, 2, . . ., in order of decreasing
real part. Whenever the context allows it, we shall omit the eigenvalue and/or solution labels.
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Real-valued fields vr and vi can be reconstructed from the real-valued vectors vr and vi,
and the real-valued initial velocity field u(0) = uEQ + εvr evolves as

u(t) = uEQ + ε (vr cos ωt− vi sin ωt) eµt + O(ε2) . (3.9)

3.5. Unstable manifolds
Let W s

EQ (Wu
EQ) denote the stable (unstable) manifold of equilibrium uEQ. For each real-

valued unstable eigenvalue λ(n), we shall refer to the orbit of an infinitesimal perturbation
of uEQ along the corresponding eigenfunction v(n)

EQ as W
u(n)
EQ . This part of the uEQ un-

stable manifold is 1-dimensional and can be computed by DNS integration of the initial
conditions uEQ ± εv(n)

EQ , where ε ¿ 1.
For an unstable complex pair λ(n,n+1) of equilibrium uEQ, let W

u(n,n+1)
EQ denote the

orbit of a circle of infinitesimal radius in the plane about uEQ spanned by v(n)
r ,v(n)

i .
This part of the uEQ unstable manifold is 2-dimensional; its shape can be traced out by
computing a set of trajectories with initial conditions uEQ + ε(v(n)

r cos θ + v(n)
i sin θ) for

a set of values of θ. In practice, one obtains a more uniform distribution of trajectories
by setting initial conditions along the line uEQ + εv(n)

r , for a set of values of ε.
The global unstable manifolds W

u(n)
EQ and W

u(n,n+1)
EQ are invariant sets that preserve

the symmetries shared by the equilibrium and the eigenvectors from which they are
generated. The S-invariant subspace portions of the unstable manifolds of uLB, uUB, and
uNB have dimensionality of 1, 2, and 3, respectively, see figure 4(b). In what follows, we
will focus on these low-dimension unstable manifolds confined to the US subspace.

4. The geometry of plane Couette state space
We now turn to the main theme of this paper: exact state-space portraiture of plane

Couette flow dynamics. The state-space portraits are dynamically intrinsic, since the
projections are defined in terms of solutions of the equations of motion, and representation
independent, since the projection operation (the inner product (4.1)) is independent of
the numerical representation. The method is by no means restricted to plane Couette
flow or our choice of state-space representation or CFD algorithm. It can be applied
to any high-dimensional dissipative flow, for example the Kuramoto-Sivashinsky flow
(Cvitanović et al. (2008)). Production of state-space portraits requires numerical data of
3D velocity fields evolving in time (obtained obtained from simulation or experiment),
estimates of important physical states (such as equilibrium solutions and their linear
stability eigenfunctions), and a method of computing the inner product between velocity
fields over the physical domain.

4.1. Peering into ∞-dimensional state spaces
Numerical methods have advanced to the point where it is possible to compute highly
accurate unstable exact coherent states in low-Reynolds shear flows. How is one to visu-
alize them? Even though fully-resolved solutions of Navier-Stokes equation are embedded
in 105 or higher dimensional state spaces, there are few unstable eigendirections for Re
close to the onset of turbulence. The associated asymptotic strange attractors / repellers
might thus be amenable to dynamical systems visualizations, such as trajectory projec-
tions, Poincaré sections, state-space partitions and symbolic dynamics description.

In this section, we show that revealing, representation-independent state-space por-
traits can be defined in terms of invariants of the dynamical system. The idea is to form
a basis set from fluid states that characterisize the recurrent coherent structures, and to



12 J. F. Gibson, J. Halcrow, and P. Cvitanović

project the evolving fluid state u(t) onto this basis with the inner product

(u,v) =
1
V

∫
Ω

dx u · v , ‖u‖2 = (u,u) (4.1)

that corresponds to the energy norm (2.2) and where the fields u and v are differences
from the laminar flow. That is, we form orthonormal basis functions {e1, e2, . . . , en}
from a set of linearly independent fluid states and produce a state-space trajectory

a(t) = (a1, a2, · · · , an, · · · )(t) , an(t) = (u(t), en) (4.2)

in the {en} coordinate frame by (4.1). The projection can be viewed in any of the 2d
planes {em, en} or in 3d perspective views {e`, em, en}. The resulting portraits depend on
the fluid states involved and not on the choice of numerical representation. For example,
(4.3) defines an orthonormal basis set formed from the upper-branch equilibrium and its
four half-cell translations. Orthonormality of the basis set is not strictly necessary, but
with it, distances are directly related to the energy norm of u.

The low-dimensional projections presented in this section are closely related to other
finite approaches to Navier-Stokes in purpose and partly in technique. For example, on
a technical level, the projections in this section differ from the finite discretizations dis-
cussed in § 3.1 only by degree of dimensionality. If the dimension n of the state-space
representation (4.2) were taken to the dimension d of the fully-resolved numerical dis-
cretization, the two discretizations would be related by a simple linear transformation. To
emphasize the differences, we use notation u for the high-dimensional vector of coefficients
of a fully-resolved numerical discretization, and a for the low-dimensional coordinates of
a state-space portrait.

The projection methods here are also similar in spirit to the low-dimensional projec-
tions of the Aubry et al. (1988) POD modeling approach, in that they aim to capture key
features and dynamics of the system in just a few dimensions. Indeed, our use of the L2

inner product, orthonormal basis functions, and the very idea of constructing a basis from
characteristic states derive directly from POD modeling. But the methods presented here
depart from the POD in two key points: (1) We construct basis sets from exact solutions
of the full-resolved dynamics rather than from the empirical eigenfunctions of the POD.
Exact solutions and their linear stability modes (a) characterize coherent fluid states
precisely, compared to the truncated expansions of the POD, (b) allow for different basis
sets and projections for different purposes and different regions of state space, and (c)
are not limited to Fourier modes and O(2) symmetry in homogeneous directions. (2)
We deploy low-dimensional visualization without any low-dimensional modeling. The dy-
namics are computed with fully-resolved direct numerical simulations and projected onto
basis sets to produce low-dimensional state-space portraits, tailored to specific purposes
and specific regions of state space. The portraits reveal dynamical information visually,
providing insight into dynamics that can guide further analysis. We do not suggest that
any of our low-dimensional projections is suited to the production of a low-dimensional
ODE model via global projection of the state-space dynamics.

4.2. A global basis spanned by discrete translations of uUB

There is an infinity of possible basis sets, but two choices appear particularly natural:
(a) global basis sets, determined by a set of dynamically important and distinct states,
or (b) local basis sets, defined in terms of a given equilibrium uEQ and its linear stability
eigenfunctions v(n)

EQ . An example of a local coordinate system based on eigenfunctions of
the uUB equilibrium is presented in § 4.4; an example of a global basis is defined here and
used to construct state-space portraits in § 4.3.
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The projection for a global state-space portrait should emphasize important global
features of the flow. For example, for a system with three distinct equilibria, a good first
guess for a plane of projection would be the plane containing the three equilibria. The
system under study has three distinct equilibria uUB, uLB, and uNB, each appearing in
four spatial phases, plus the laminar equilibrium at the origin. We have found that for the
S-invariant subspace US the irreducible representations of the half-cell translations group
T (§ 2.2) provide natural linear combinations of a given equilibrium and its translations.

For example, a set of orthonormal basis functions based on uUB and its half-cell trans-
lated siblings can be generated by the four irreducible representations of the D2 dihedral
group T = {1, τx, τz, τxz} (see § 2.2):

τx τz τxz

e1 = c1(1 + τx + τz + τxz)uUB S S S

e2 = c2(1 + τx − τz − τxz)uUB S A A

e3 = c3(1− τx + τz − τxz)uUB A S A (4.3)
e4 = c4(1− τx − τz + τxz)uUB A A S .

where cn is a normalization constant determined by ‖en‖ = 1. The last 3 columns indicate
the symmetry of each basis function under half-cell translations; e.g. S in the τx column
implies that τxen = en and A that τxen = −en. As the ‘velocity’ u in the Navier-Stokes
equation (2.1) for plane Couette flow is the difference from laminar flow, the origin in
state-space portraits corresponds to the laminar equilibrium uLM. This origin is shared
by all symmetry-invariant subspaces, as uLM = 0 is invariant under all symmetries of the
flow. Note, however, that the basis functions en are not themselves invariant solutions
of Navier-Stokes; rather, they form an orthogonal coordinate system that spans the four
translations of uUB within the S-invariant subspace US .

The evolution of a state u ∈ US is represented in this projection by the trajectory
a(t) = (a1, a2, a3, a4)(t) with an(t) = (u(t), en). As discussed in § 4.1, this is a low-
dimensional projection intended for visualization. The dimensionality is lower than the
full state space, so trajectories can appear to cross in such projections. We emphasize
again that this is one of many possible projections that can be constructed from linear
combinations of exact solutions, their spatial translations, and their eigenfunctions. An
example of a more complex basis construction is given in § 4.4.

4.3. A global stroll through plane Couette state space
With this road map in hand, let us take a stroll through the state space of a transiently
turbulent plane Couette flow. Like many dynamical narratives, this will be a long walk
through unfamiliar landscape with many landmarks of local interest. We undertake the
tour for several reasons. The main message is that now such a promenade is possible
even in 105 dimensions. But a detailed road map is a necessary prerequisite for solving at
least three outstanding problems: (a) uncovering the interrelations between (in principle
infinite number of) invariant solutions, such as those of figure 6, (b) a partition of state
space is a needed for a systematic exploration of dynamical invariant structures such as
relative periodic orbits, and (c) explicit linear stability eigenvectors and their unstable-
manifold continuations will be needed to control and chaperone a given fluid state to a
desired target state.

Our first example of a global state-space portrait of plane Couette flow is figure 5.
Here trajectories in the unstable manifolds of uLB, uNB, uUB and several of their half-
cell translations are projected onto {e1, e2} plane defined by (4.3). Both e1 and e2 are
symmetric in τx, so points related by half-cell translations in x (such as uLB and τxuLB)
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0 0.1 0.2 0.3 0.4

−0.2

−0.1

0

0.1

0.2 u
UB

τ
z
 u

UB

a
1

u
NB

u
LB

τ
z
 u

LB

u
LMa 2

Figure 5. A state space portrait of plane Couette flow for Re = 400 and [Lx, Ly, Lz] =
[2π/1.14, 2, 4π/5], projected from 61 506 dimensions to 2. The labeled points are exact equi-
librium (steady-state) solutions of the Navier-Stokes equation (see § 3); the curved trajectories
are fully-resolved time-dependent numerical integrations of Navier-Stokes projected onto the
e1, e2 plane defined by (4.3), with the projection an = (u, en) defined by (4.1). The laminar
equilibrium is uLM; the equilibria labeled uLB, uNB, and uUB are shown in figure 3. W u

LB, the
1d unstable manifold of the ‘lower-branch’ equilibrium uLB, and τzW u

LB, its half-cell translation

in z, are shown with thick blue lines. W
u(1,2)
NB , a 2d portion of the unstable manifold of uNB,

is shown with thin black and red spirals emanating from uNB. Similarly, the thin green lines
spirally out of uUB and τzuUB indicate W u,S

UB and τzW u,S
UB , the 2d unstable manifolds of uUB and

its half-cell translation τzuUB. Open dots along W u
LB show initial conditions for Newton-GMRES

searches used to find uNB. The plane of the projection is defined in terms of the equilibrium
solutions; it is dynamically invariant and independent of the numerical representation. See § 4.2,
§ 4.3, and § 3.2 for discussions of the projection, dynamics, and numerical discretization.

map to the same point in this projection. The basis function e2 is antisymmetric in τz, so
half-cell translations in z appear symmetrically opposite along a2. uNB and its unstable
manifold are shown only in a single z translation, since the reversed orientation of the
unstable spiral of τzuNB only clutters the picture.

The uLB unstable manifold Wu
LB forms the backbone of the dynamics shown in

Figure 5. The uLB equilibrium has a single real-valued unstable eigenvalue, as shown in
figure 4 for Re = 400 and for much higher Re in Wang et al. (2007). Wu

LB is therefore
1d and can be computed in its entirety as discussed in § 3.5. In figure 5, the projection
of Wu

LB onto {e1, e2} is plotted with thick blue lines. Both branches of Wu
LB decay to

laminar flow, one immediately, and the other after a turbulent excursion towards uUB.
The portion of the unstable manifold of τzuLB shown here was obtained by applying the
τz shift, a2 → −a2, to Wu

LB .
We were lead to the discovery of uNB by the circular curvature of Wu

LB and τzW
u
LB

in the projection of figure 5, which suggested the possibility of an equilibrium with a
complex eigenvalue near the center of curvature. We initiated Newton-GMRES searches
for an equilibrium at several positions between noon and three o’clock along Wu

LB , as
pictured in figure 5; each search converged either on uLB or on the new equilibrium uNB.

The uNB unstable manifold Wu
NB : Within US , the uNB equilibrium has a complex
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pair of unstable eigenvalues and one real unstable eigenvalue (figure 4(b)). The instability
of the real eigenvalue is weaker than the complex pair; we omit it from consideration
here and focus on the 2d subset W

u(1,2)
NB corresponding to the complex pair λ

(1,2)
NB with

eigenvectors v
(1,2)
NB . W

u(1,2)
NB is shown in figure 5 as a spiral of trajectories emanating from

uNB, calculated as discussed in § 3.5. This simple geometric picture produces our first
striking result: the 2d surface W

u(1,2)
NB is apparently bounded by the 1d curve Wu

LB .

A heteroclinic connection from uNB to uLB: As it approaches uLB, W
u(1,2)
NB sep-

arates along the two branches of Wu
LB . Since uLB has a single unstable eigenvalue, we

expect that a single trajectory in W
u(1,2)
NB straddles the split along Wu

LB and is drawn in
towards uLB along its stable eigenvectors as t → ∞, forming a heteroclinic connection
from uNB to uLB.

This is a strikingly unexpected result. In dimensions higher than two, heteroclinic
connections are nongeneric, since it is unusual that a 1d trajectory can be arranged
to strike a particular zero-dimensional point. However, discrete symmetries and the di-
mensionality of the uLB unstable manifold make heteroclinic connections possible in this
case (Kevrekidis et al. (1990); Holmes et al. (1996); Cvitanović et al. (2008)). The set
of candidate trajectories emerging from the neighborhood of uNB is increased from one
dimension to two by the complex instability (or three if λ

(3)
NB is considered as well). The

dimensionality of state space near the target uLB is effectively reduced to one by its
codimension-1 set of stable eigenvalues.

Considered in the full space U, the continuous translation symmetry increases the
dimensionality of both the candidate trajectories and the target by two. However, the
invariance of US under Navier-Stokes immediately restricts possible heteroclinic connec-
tions between the torus of uNB and uLB translations to the four translations of uLB within
US : if a trajectory in the unstable manifold of uNB terminates at a uLB state, it may do
so only at uLB, τxuLB, τzuLB, or τxzuLB. Note also that most weakly stable eigenvalues of
uLB, λ

(4)
LB through λ

(8)
LB , are outside the US subspace, so trajectories in W

u(1,2)
NB are forced

to approach uLB along the more strongly contracting eigendirections of λ
(9)
LB and λ

(10)
LB

(table 1).
The heteroclinic connection from uNB to uLB forms a boundary between trajectories

that decay immediately to laminar flow and those that grow towards transient turbulence.
Those that pass near uLB and grow to turbulence follow the unstable manifold of uLB into
a region near the uUB equilibrium. For Re = 400 and [Lx, Ly, Lz] = [2π/1.14, 2, 4π/5], all
generic initial conditions investigated so far ultimately decay to laminar. But, at higher
Reynolds numbers and larger aspect ratios for which turbulence is sustained, we expect
that the uNB → uLB heteroclinic connection will form a 1d portion of the boundary of
the laminar state’s basin of attraction. This 1d boundary should be extendable to 2d by
adding the third unstable eigenvalue of uNB into consideration.

Lastly, we note that it is not possible to determine from figure 5 alone whether the
heteroclinic connection from uNB goes to uLB or τxuLB, since both of these map to the
same point in the {e1, e2} plane of projection. Figure 6 (discussed below) resolves this
question and shows that the connection is indeed from uNB to uLB.

Dynamics near τzuLB and τxzuLB: A second separation of uNB’s unstable manifold
W

u(1,2)
NB occurs in the bottom half of figure 5, near τzuLB. Trajectories on the laminar

side of τzuLB follow its unstable manifold towards the laminar state; those on the other
side head towards turbulence in the direction of the τzuLB unstable manifold.

The dynamics in the region near τzuLB can be clarified by adding a third coordinate
a3 = (u, e3) to the 2d projection of figure 5. Since e3 is antisymmetric in τx, the a3 coor-
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Figure 6. The unstable manifold of uLB and its half-cell translations W u
LB, τxzW u

LB, etc. (thick

blue lines) and a 2d portion of the uNB unstable manifold W
u(1,2)
NB (thin black and red lines).

uNB is shown in only one translation (center of spiral); all four translations of uLB are shown
(solid dots –the unlabeled dot underneath uLB is τxuLB). The thick red line makes the closest
pass to τxzuLB of the trajectories shown. The projection is from 61,506 dimensions to 3 in the
translation-symmetric global basis {e1, e2, e3} defined by (4.3).

dinate distinguishes states such as τzuLB and τxzuLB that are related by a τx translation
and so lie on top of each other in the projection of figure 5: (τzuLB, e3) = − (τxzuLB, e3).
Figure 6 shows a 3d perspective of (a1, a2, a3) which reveals that the second separation
of W

u(1,2)
NB , unlike the first, does not result from a heteroclinic connection between uNB

and a translation of uLB. As trajectories straddling the split near τzuLB and τxzuLB are
refined, they approach neither of these points. Likewise, the extensions of the refined tra-
jectories approach neither the Wu

τzLB = τzW
u
LB nor Wu

τxzLB = τxzW
u
LB unstable manifolds.

The thick red trajectory in figure 6 passes closer to τxzuLB than the other trajectories
shown, but its recedes from τxzW

u
LB instead of approaching it.

The geometry of W
u(1,2)
NB in this region is fairly complex. The separation of trajectories

between τzuLB and τxzuLB suggests that another equilibrium might exist in this region;
however, our Newton-GMRES searches initiated in this region converged on τzuLB or
τxzuLB. It is clear, however, that the geometry of W

u(1,2)
NB is shaped by the unstable

manifolds of uLB and two of its translations, namely, Wu
LB, Wu

τzLB, and Wu
τxzLB. The

upper-branch solution also plays a role: in figure 5 one trajectory within W
u(1,2)
NB is

drawn towards τzuUB and follows trajectories in its unstable manifold. The perspective
of figure 6 also identifies uLB and not τxuLB as the endpoint of the heteroclinic connection
discussed above.

Thus, with two simple state-space portraits, we have identified several regions in state
space that trigger transitions toward qualitatively different types of flow. We expect that
identification of such state-space regions will be extremely valuable in the development
of nonlinear control strategies for wall-bounded turbulence.
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Figure 7. (a) The unstable manifolds W u,S
UB (solid green lines) and τxW u,S

UB (dotted black lines)
of the upper-branch equilibrium uUB and its half-cell translation τxuUB. (b) A refined view of dy-

namics within W u,S
UB . The coordinates (aλ

1 , aλ
2 , aλ

3 ) are projections onto the basis set {eλ
1 , eλ

2 , eλ
3}

that spans the plane of unstable oscillation around uUB and the direction between uUB and
τxuUB. See § 4.4.

4.4. A local state-space portrait: the unstable manifold of uUB in US

The eigenfunctions of an equilibrium provide a natural coordinate system for viewing
its local dynamics. Within the S-invariant subspace US , uUB has a single complex pair
of unstable eigenvalues, which define a plane of local linear oscillation and two natural
directions for a local coordinate system. The 2d portion of Wu

UB within US , which we
denote by Wu,S

UB , departs from this plane as the distance from uUB increases and the
magnitudes of nonlinear terms in the local Taylor expansion become nonnegligible. But
since the nature of this nonlinearity was unknown, it was not immediately clear in our
investigations how to choose a third basis function for a 3d projection of local uUB

dynamics. We tried a variety of candidates, including principal components analysis
(i.e. local POD) on numerically integrated trajectories as they deviate from the plane of
oscillation. This initial exploration suggested that the dominant nonlinear effects about
uUB are in fact the linearized dynamics around its half-cell translation τxuUB.

We then constructed a basis set by Gram-Schmidt orthogonalization of the plane of
oscillation v(1)

r,UB, v(1)
i,UB of the unstable complex eigenvalue pair λ

(1,2)
UB (see § 3.5) and

(τxuUB − uUB), that is, the direction between uUB and its half-cell translation in x. We
indicate the Gram-Schmidt orthogonalized basis and coordinates with a λ superscript,
{eλ

1 , eλ
2 , eλ

3} and aλ
n(t) = (u(t), eλ

n), to indicate its construction from the unstable uUB

eigenfunctions and the uUB to τxuUB line.
Figure 7 shows Wu,S

UB in the eλ
n local coordinate system. In figure 7 (a), Wu,S

UB spirals
out from the center uUB in the plane {eλ

1 , eλ
2} spanning v(1)

r,UB, v(1)
i,UB. Strong nonlinearity

and strong trajectory separation first occur near point A: below A, trajectories continue
the unstable linear oscillation for another cycle; above, they begin oscillation around
τxuUB, following paths similar to trajectories in τxWu

uUB
. Figure 7 (b) shows a refinement

of trajectories in Wu,S
UB on the upper side of the split at A. Near point B, the refined

trajectories undergo a second split from their neighbors shown in figure 7 (a), and a third
split among themselves at A′. This behavior and marked similarity to the trajectories
of τxWu,S

UB in figure 7 (b) suggests that dynamics in this region, until escape, consists of
alternating oscillations around a symmetric pair of unstable equilibrium, in a manner
reminiscent of the Lorenz system.

This interpretation is reinforced by figure 8, which shows the pair of Wu,S
UB trajectories
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Figure 8. A pair of nearby trajectories in the unstable manifold of uUB, from figure 7(a) (solid
green lines), plotted against their symmetric counterparts in the unstable manifold of τxuUB

(dotted black lines), together with uLB, τxuLB (unlabeled), uNB τxuUB, and the laminar equilib-
rium uLM. uNB appears much closer to the laminar state than uLB by an artifact of the projection;
see figure 5 for another view. The coordinates a1, a2 are in the global translation-symmetric basis
e1, e2 defined by (4.3) and used in figure 5 and figure 6.

from figure 7(b) that split at A′ together with their counterparts in τxWu,S
UB , replotted

using the global translational-symmetric basis (4.3). The projection onto (e1 + e2)/
√

2
and e3 was chosen because it provides a clear view of the path ABA′, and because
these functions are symmetric and antisymmetric in τx, respectively. Note that the two
pairs of trajectories in Wu,S

UB and τxWu,S
UB draw together just before A′. Each pair of nearby

trajectories emanating from the same equilibrium splits at A′ and switches allegiance with
the pair from the opposite equilibrium, so that past A′, trajectories on opposite unstable
manifolds follow almost identical paths. The τx-antisymmetric long-term behavior of two
nearby initial conditions from uUB suggests that the path from B to A′ is one of weakening
x variation, reaching small but nearly τx-antisymmetric x variation near A′. After A′,
a τx-antisymmetric instability comes into play, resulting in long-term τx-antisymmetric
dynamics.

For the parameters of this study, the trajectories investigated so far leave the region
of the uUB and its translations after a few oscillations, so that the uUB unstable manifold
has the characteristics of a chaotic repeller. We expect that unstable periodic orbits can
be found in this region, and we intend to explore this in a future publication.

4.5. Transient turbulence
The final stop in our stroll through plane Couette state space is an illustration of transient
turbulence against the backdrop of the invariant structures featured in previous figures.
For the Reynolds number and cell aspect ratios studied here, all initial conditions investi-
gated so far ultimately decay to laminar. Figure 9(a) shows a single trajectory, initiated
as a perturbation of uNB, that exhibits transient turbulence and then decays to lam-
inar flow. The coordinate system is (4.3), the same as in figure 6. The region of state
space explored by this trajectory is typical of all observed transiently turbulent dynamics
in US . The trajectory is unusually long-lived; after leaving the spiraling region around
uNB it wanders for some 1000 nondimensionalized L/U time units before converging on
the laminar state, compared to more typical 200 time-unit lifetimes of other trajectories
initialized as pertubations of uNB.

When seen in isolation in figure 9(a), the turbulent trajectory shows little discern-
able order. When plotted within the framework of invariant structures of the flow, in
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Figure 9. A transiently turbulent trajectory in the uNBunstable manifold, (a) in isolation
(b) in relation to uLB, uNB, uUB, their half-cell translations, and their unstable manifolds (see
figure 5 and figure 6 for more detailed labeling of these features). The final decay to laminar
of several other trajectories in the unstable manifolds of uNB and uUB are also shown. The
projection is the same as that of figure 6.

figure 9(b), structure is immediately evident. In this 3d perspective, the decay to laminar
flow is confined to a region bounded by the uNB and uLB unstable manifolds. Transient
turbulence occurs on the far side of laminar from these states, a1 > 0.15, and in a
region shaped roughly by the unstable manifolds of uLB, uUB, uNB, and their half-box
translations. Close inspection shows that segments of the transient turbulent trajectory
occasionally follow the contours of nearby unstable manifolds.

5. Conclusion and perspectives
Currently a large conceptual gap separates what has been achieved for low-dimensional

dynamical systems and the challenges we face in understanding infinite-dimensional tur-



20 J. F. Gibson, J. Halcrow, and P. Cvitanović

bulent flows. Recent computations of invariant solutions of wall-bounded flows and their
agreement with the qualitative features of numerical simulations and experiments suggest
that a dynamical theory of moderate-Re turbulence is within reach. We initiate a sys-
tematic exploration of the hierarchy of exact unstable invariant solutions of fully-resolved
Navier-Stokes equations in order to describe the spatio-temporally chaotic dynamics of
turbulent fluid flows in terms of these states. The key advance reported here is a novel
visualization of moderate-Re fluid dynamics in terms of dynamically invariant, intrinsic
and representation independent coordinate frames. The method offers an alternative visu-
alization of numerical and/or experimental data of any dissipative flow close to the onset
of turbulence. In this paper, the visualizations lead to the discovery of a new equilibrium
solution of plane Couette flow and a heteroclinic connection between two non-laminar
equilibria. We have also computed the eigenvalues and symmetries of the three known
equilibria of plane Couette flow in a small periodic cell with moderate Reynolds number
and established the low-dimensionality of their unstable manifolds.

At first glance, turbulent dynamics visualized in state space might appear hopelessly
complex, but detailed examination suggests it might be much less so than feared: turbu-
lent dynamics appears to be pieced together from near visitations to exact coherent states
interspersed by transient interludes. Equilibria, traveling waves, and periodic solutions
of plane Couette flow embody Hopf’s vision: a repertoire of recurrent spatio-temporal
patterns explored by turbulent dynamics. We conceive of turbulence as a walk through a
repertoire of unstable recurrent patterns. As a turbulent flow evolves, every so often we
catch a glimpse of a familiar pattern. For any finite spatial resolution, the flow approx-
imately follows for a finite time a pattern belonging to a finite alphabet of admissible
fluid states, represented here by a set of exact coherent states.

What new insights does the ‘unstable coherent states program’ offer? Normal-form
models derived from severe truncations of spectral representations of PDEs - most fa-
mously the Lorenz model - capture qualitatively the bifurcations and chaotic dynamics
evocative of those observed in fluid dynamics. In contrast, exact unstable coherent states
and periodic orbit theory should provide accurate quantitative predictions for dynamical
observables of Navier-Stokes (such as the average turbulent drag), for a given flow, given
flow geometry, given Re and other parameters. This description should lead to quan-
titative predictions of transport properties of fluid flows such as bulk flow rate, mean
wall drag, and their fluctuations. The success of computing exact eigenfunctions and
unstable manifolds also opens a new approach to control of turbulence in wall-bounded
shear flows: perturbations in these directions can be used to stabilize or chaperone the
flow towards a desired fluid state, and not necessarily the laminar one (Kawahara et al.
(2005); Wang et al. (2007)).

The state-space exploration of equilibria and their global unstable manifolds presented
here is the first step. While important in organizing the turbulent flow, equilibria, being
static, do not actually participate in it. That role is played by the infinity of unstable
periodic orbits densely embedded in the asymptotic attractor. That it is possible to
compute exact 3D unstable periodic solutions of Navier-Stokes has been demonstrated
in the pioneering work of Kawahara & Kida (2001), for periodic orbits, and Viswanath
(2007), for relative periodic orbits. However, a combination of novel and proven numerical
and analytical techniques such as variational solvers, periodic orbit theory, and group
representation theory is still needed for a systematic exploration of the hierarchy of such
solutions and to derive the statistics of the flow through periodic orbit theory (Cvitanović
et al. (2007)).

We would like to acknowledge F. Waleffe for his very generous guidance through the
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n mode ky kz Arnoldi λ
(n)
LM Analytic λ

(n)
LM

1,2 H 1 0 -0.00616850 -0.00616850
3,4 H 1 1 -0.02179322 -0.02179350
5,6 H 2 0 -0.02467398 -0.02467401
7,8 S - 1 -0.02916371 -0.02916371
9,10 H 2 1 -0.04029896 -0.04029901
11,12 H 3 0 -0.05551652 -0.05551653

n µ
(n)
LB ω

(n)
LB s1s2s3

1 0.0501205 S S S
2 1.878e-06 - - -
3 -1.625e-06 - - -
4 -0.0020054 A S A
5 -0.0065977 AA S
6 -0.0069308 S AA
7 -0.0097953 S AA
8 -0.0135925 A S A
9 -0.0239353 S S S
10 -0.0335130 S S S
11 -0.0370295 S AA

12,13 -0.0454857 0.0190660 AA S

Table 1. (left) Least stable eigenvalues of the laminar equilibrium uLM for
[Lx, Ly, Lz] = [2π/1.14, 2, 4π/5] and Re = 400, computed by Arnoldi iteration, compared
to Stokes (S) and heat-equation (H) eigenvalues from analytic formulas. This serves as a test
of accuracy for our channelflow.org codes. The heat-equation eigenfunctions have the form
u(x, t) = eλt sin(πkyy/2) cos(2πkzz/Lz)) x̂ for ky even and eλt cos(πkyy/2) cos(2πkzz/Lz)) x̂
for ky odd, and eigenvalues λ = −(π2k2

y/4 + 4π2k2
z/L2

z)/Re. The Stokes eigenvalue listed is
the lowest-order mode with v component of the form v̂(y) cos(2πz/Lz), v̂(y) even in y (see
Waleffe (1997)). The eigenvalues are ordered in the table by decreasing real part. All laminar
eigenvalues are real. (right) uLB equilibrium stability eigenvalues λ = µ ± iω and symmetries
of corresponding eigenvectors at same parameter values. The zero eigenvalues result from the
continuous translation symmetry of the flow.

n µ
(n)
NB ω

(n)
NB s1s2s3

1 0.0306497 A S A
2,3 0.0261952 0.056377 S S S
4 0.0183668 S S S
5 0.0174064 S AA
6 0.0158648 A A S
7 -1.047e-07 - - -
8 -4.709e-07 - - -
9 -0.0045203 A S A
10 -0.0048642 S AA

n µ
(n)
UB ω

(n)
UB s1s2s3

1 0.0555837 A A S
2,3 0.0325292 0.107043 S S S
4,5 0.0160591 0.039238 S AA
6,7 0.0152926 0.284177 S AA
8 0.0106036 A S A
9 1.032e-06 - - -
10 1.599e-07 - - -

11,12 -0.0141215 0.057748 S S S
13 -0.0181827 S AA

Table 2. Stability eigenvalues λ = µ± iω and symmetries of corresponding eigenvectors: (left)
uNB, (right) uUB equilibrium for [Lx, Ly, Lz] = [2π/1.14, 2, 4π/5] and Re = 400.

course of this research. We also greatly appreciate D. Viswanath’s guidance in the lin-
earized stability calculations and his thoughtful comments on drafts. We are very grate-
ful for the valuable comments and suggestions of the reviewers. P.C. and J.F.G. thank
G. Robinson, Jr. for support. J.H. thanks R. Mainieri and T. Brown, Institute for Physical
Sciences, for partial support.

Appendix A. Tabulation of numerical results
Tables 1 and 2 list the least stable linear stability eigenvalues of the uLM, uLB, uNB, and

uUB equilibria, together with symmetries of corresponding eigenfunctions. The unstable
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eigenvalues together with a set of the least contracting stable eigenvalues are also shown
in Figure 4. All numerical results tabulated in this appendix are computed for plane
Couette flow with Re = 400 and [Lx, Ly, Lz] = [2π/1.14, 2, 4π/5]. Full sets of exact
invariant solutions, their linear stability eigenvalues and eigenfunctions are available on
channelflow.org, (Gibson (2007)), or can be obtained by a request to authors.
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