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LOCALIZATION IN TRANSITIONAL SHEAR FLOWS

Tobias M. Schneider1,2,a), John F. Gibson3, John Burke3, Evan Brand4 & John Platt1
1School of Engineering and Applied Science, Harvard University, Cambridge, MA 02138, USA

2Max Planck Institute for Dynamics and Self-Organization, D-37073 Göttingen, Germany
3Dept. Mathematics and Statistics, University of New Hampshire, Durham, NH 03824, USA

4Dept. Mathematics and Statistics, Boston University, Boston, MA 02215, USA

Summary Locally perturbing a parallel shear flow induces a spatially localized patch of turbulence that slowly invades the surrounding
laminar flow. Though spatio-temporal patterns such as these ‘turbulent spots’ play a crucial role in transitional flows, the mechanism
which gives rise to the observed localized structures is not well understood. We will present evidence that a well-developed theory of a
localized patterns in simpler PDE models carries over to Navier-Stokes flow and allows to capture the observed patterns. Specifically,
we will demonstrate the existence of multiple families of exact equilibrium and traveling wave solutions to the full Navier-Stokes
equations. Those solutions share the topology of periodic solutions previously shown to play key roles in the transition to turbulence
and turbulent dynamics itself but are localized in space. These localized solutions are a step towards extending the emerging dynamical
systems view of transitional turbulence to spatially extended flows and uncovering the mechanisms underlying spatio-temporal turbulent
patterns.

Introduction and Background
In the past decade ideas from nonlinear dynamics in combination with advances in numerical simulation techniques have
laid the foundation for a new approach to study turbulence. A connection between dynamical systems and turbulence
has been the subject of conjecture since the 1940s [1] .Only recently, however, has concrete progress allowed dynamical
systems to be truly established as a new paradigm to study turbulence. This progress is based on the discovery of exact
equilibrium and traveling-wave solutions to the full nonlinear Navier-Stokes equations. These exact solutions, together
with their entangled stable and unstable manifolds, form a dynamical network that supports chaotic dynamics, so that
turbulence can be understood as a walk among unstable solutions [2, 3]. Moreover, specific exact solutions are found
to be edge states [4], that is, attracting objects in the stability boundary between laminar and turbulent dynamics. Thus,
exact solutions play a key role both in supporting turbulence and in guiding transition.
Turbulence often does not fill the whole available domain: Instead, it coexists with laminar flow, giving rise to localized
laminar-turbulent patterns. Despite its success in other areas, the emerging view of turbulence as a dynamical system
has not yet been able to address the full spatio-temporal dynamics of turbulent flows. One major limitation is that exact
solutions have mostly been studied in small computational domains with periodic boundary conditions. The small periodic
solutions cannot capture localized spatial structures such as turbulent spots in plane Couette flow that are triggered by a
localized perturbation and then grow by invading the surrounding laminar flow. Generalizing the dynamical systems
picture of turbulence to the spatio-temporal aspects of flows in extended domains thus requires the existence of localized
exact solutions.

Results: Localized invariant solutions for plane Couette flow
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Figure 1. Spatially localized counterparts (bottom) of a periodic (top) exact invariant solution of plane Couette flow together with the
full bifurcation diagram (right), where drag is plotted vs. Reynolds number: The localized solutions (uEQ, uTW) form a snakes-and-
ladders structure as in the Swift-Hohenberg equation, and reconnect to the spatially periodic solution uP. All branches correspond to
full 3D solutions of the nonlinear Navier-Stokes equations and are computed using Newton-Krylov based continuation methods [6].
For details see [7].
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Such spatially localized exact solutions were recently constructed for for plane Couette flow, the flow between two parallel
plates moving in opposite direction. These solutions are localized versions of the spatially periodic Nagata equilibrium
[5]. They share the topology of periodic solutions previously shown to play key roles in the transition to turbulence and
are related to their periodic counterparts by homoclinic snaking – a pattern-forming bifurcation scenario well studied for
simpler PDE models such as the Swift-Hohenberg equation (cf. Fig. 1 and [7]).
As a function of downstream wavelength, the solutions exist for a large range of Reynolds numbers covering the relevant
transitional regime in which localized turbulence is observed. Features of the bifurcation diagram vary with downstream
wavelength and start to deviate from the pure Swift-Hohenberg scenario. Those variations can be related to physical
properties of the flow fields, specifically to the spatial distribution of stresses exerted by the walls and an apparent ‘elastic’
response of the localized solution to the external forces.
In addition to the solution families related to the periodic Nagata equilibrium localized counterparts of other known
periodic solutions exist. Not all of these solution families exhibit homoclinic snaking but they may also be located on isolas
are show a more complex bifurcation structure. The spatially localized flow fields resemble vortical structures known to
dominate the wall-near region of planar shear flows suggesting their importance for transitional turbulent dynamics.

Conclusions
All localized invariant solutions are weakly unstable with a low-dimensional unstable manifold, cover a wide range of
wavelength and Reynolds number, and exists in various sizes and forms. Thus, together they may form the dynamical
skeleton supporting spatio-temporally evolving turbulence and are thus a step towards understanding the mechanisms
underlying spatial patterns and spatiotemporal intermittency in transitional turbulence. Further steps towards understand-
ing laminar-turbulent patterns will include exploiting the striking similarity between the bifurcation structure of localized
plane Couette solutions and well-understood patterns in simpler PDE models to derive effective amplitude equations for
the turbulence intensity. Moreover, we will generalize the studies to different flow geometries including pipe but also
Taylor-Couette and boundary layer flow. These investigations promise to open new avenues for understanding general
spatio-temporal features of turbulence. In 1986 Pomeau envisioned to describe transitional turbulence as a nucleation
phenomenon in some non-equilibrium generalization of equilibrium phase-separation concepts [8]. Our work will ideally
provide a mechanistic foundation for this approach.
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