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Summary Recent theoretical and numerical work has revealed a large number of 3D, fully nonlinear, unstable solutions of the Navier-
Stokes equations which capture essential features of classically observed coherent structures in unsteady and turbulent flows. These
solutions take the form of equilibria (steady states), traveling waves, and periodic orbits; they have been discovered in plane Couette,
pipe, channel, and isotropic flows, among others [1, 2, 3, 4, 5, 6]. The unstable solutions lie within the invariant measure of turbulent
flow, thus specifying where turbulence lives within its infinite-dimensional state space. On the other hand, many solutions have remark-
ably low-dimensional unstable manifolds, so that the dynamics of turbulence within the invariant set can be understood as a series of
transitions between solutions, along a low-dimensional network of connections formed by the intersections of their stable and unstable
manifolds. As such, these unstable solutions provide a long-hoped-for bridge between turbulence and dynamical systems theory and a
practical strategy for determining and exploiting the inherent low dimensionality of unsteady and moderately turbulent dynamics.

INTRODUCTION

In moderate-Reynolds plane Couette flow, the dominant large-scale coherent structures are pairs of counter-rotating vor-
tices that convect fluid from the moving walls and create alternating high and low-speed streaks at the midplane. This
fundamental roll-streak structure is evident in the Nagata-Busse-Clever-Waleffe equilibrium solution of plane Couette
flow [1, 3].

RESULTS

State-Space Portraits: Unstable Solutions Turbulent Plane Couette Flow

We have computed a large number of additional equilibrium and traveling wave solutions of plane Couette flow which
exhibit roll-streak structures with a variety of symmetries and scales [7]. As these solutions lie within the invariant measure
of the turbulent flow and replicate its important structures, they form convenient basis sets for producing low-dimensional
state space portraits of turbulent dynamics.
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Figure 1. (a) A state-space portrait of turbulent plane Couette flow. Symmetry-related equilibria (solid dots) and their unstable
manifolds (thin solid lines), a heteroclinic connection between two equilibria (thick red line), and a turbulent trajectory (solid black
lines, usyrp) shadowing a periodic orbit (thick magenta loop, P97). The black dot at the origin is the stable laminar equilibrium. (b-e)
Velocity fields along an unstable periodic orbit at intervals At = 25 marked by open magenta dots in (a), starting at the point labeled
P97.

Figure 1 shows such a state space portrait for plane Couette flow at Re = 400 in a small periodic box. The state-space
coordinates are given by the L? inner product of the time-evolving velocity field u(¢) against a 3d basis set formed by
orthogonalizing four symmetry-related equilibrium solutions of the flow (blue dots). Solid dots represent equilibrium
solutions of the flow, and solid lines indicate trajectories in the unstable manifolds of the equilibria, computed with fully-
resolved direct numerical simulations.

The state-space portrait reveals how the furbulent flow is organized by the equilibrium and periodic-orbit solutions and
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their low-dimensional unstable manifolds. Turbulent trajectories (dotted lines) do not wander randomly, but instead in-
habit the same region of phase space as the unstable solutions. Segments of the turbulent trajectory (solid black lines)
clearly shadow the low-dimensional unstable manifolds of the flow’s equilibrium solutions, and at these times, the tur-
bulent velocity field closely resembles the nearby equilibrium solution. Turbulent trajectories can also be observed to
shadow periodic orbits. For example, the portion of the turbulent trajectory labeled .., follows closely the periodic
orbit labeled P97. During this time, the turbulent velocity field is virtually indistinguishable from the velocity field of
the periodic orbit. Eventually, the turbulent trajectory moves away from the orbit, but not in a random way; instead, the
turbulent trajectory moves away along an unstable manifold of the orbit to the neighborhood of another solution. This
process repeats itself as the turbulent flow continues to evolve in time. Thus the picture illustrates two key concepts:
(1) Coherent structures in turbulence are the physical images of close passes to unstable solutions of the flow, and (2)
turbulent dynamics can be understood as a series of transitions between nearby unstable invariant states.

Approximating Turbulent Attractors with Periodic Orbits

Further, since the periodic orbits of a
chaotic dynamical system are dense in the
system’s invariant measure, the periodic
orbits of a turbulent flow provide a way
to approximate its attracting set. Figure 2
compares the state-space visualizations of
a set of some forty unstable periodic orbits
of plane Couette flow (in a certain invariant
symmetric subspace) and the flow’s natu-
ral measure, represented by a typical tra-
jectory in the same invariant subspace [8].
It is evident that the turbulent flow explores
the region of state-space covered by the set
of periodic orbits. The correspondence be-
tween the set of orbits and the system’s
natural measure is made precise by Pe-
riodic Orbit Theory, which relates statis-
tical averages over invariant measures of
chaotic systems to weighted sums over the
infinite set of its unstable periodic orbits.

Figure 2. State-space visualization of (left) a set of periodic orbits of turbulent plane
Couette flow compared to (right) the natural measure as explored by a generic tur-
CONCLUSIONS bulent trajectory. The projection is onto the first three principal components of the
dynmically dominant periodic orbit and its symmetric counterpart.

We have computed a large number of equi-

librium, traveling wave, and periodic or-

bit solutions of plane Couette flow and

used these solutions to construct state-

space portraits of the turbulent flow’s dynamics. The state-space portraits reveal a rich set of dynamical phenomena
in the turbulent flow, including heteroclinic connections between equilibrium solutions [9], and turbulent trajectories
shadowing periodic orbits and the unstable manifolds of equilibria. Coherent structures in the turbulent flow are revealed
as close passes to weakly unstable solutions. Further, we present numerical evidence that the turbulent flow explores the
same region of state space inhabited by a large set of its periodic orbits.
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