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1.6.2 Spectral determinant

The eigenvalues of a linear operator are given by the zeros of the appropriate
determinant. One way to evaluate determinants is to expand them in terms of
traces, using the identities exercise 4.1
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and integrating over s. In this way the spectral determinant of an evolution
operator becomes related to the traces that we have just computed: chapter 17
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The 1/r factor is due to the s integration, leading to the replacement T p →
Tp/rTp in the periodic orbit expansion (1.15). section 17.5

det(1−zL)

z
= exp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ z

trln(1−zL)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Fig. 1.13 Spectral determinant is preferable
to the trace as it vanishes smoothly at the
leading eigenvalue, while the trace formula
diverges.

The motivation for recasting the eigenvalue problem in this form is sketched
in Fig. 1.13; exponentiation improves analyticity and trades in a divergence of
the trace sum for a zero of the spectral determinant. We have now retraced the
heuristic derivation of the divergent sum (1.7) and the dynamical zeta function
(1.10), but this time with no approximations: formula (1.17) is exact. The com-
putation of the zeros of det (s −A) proceeds very much like the computations
of Section 1.5.3.

1.7 From chaos to statistical mechanics

Under heaven, all is chaos. The situation is excellent!
— Chairman Mao Zedong, a letter to Jiang Qing

The replacement of individual trajectories by evolution operators which prop-
agate densities feels like a bit of mathematical voodoo. Indeed, something very
radical and deeply foundational has taken place. Consider a chaotic flow, such
as the stirring of red and white paint by some deterministic machine. If we
were able to track individual trajectories, the fluid would forever remain a stri-
ated combination of pure white and pure red; there would be no pink. What
is more, if we reversed the stirring, we would return to the perfect white/red
separation. However, that cannot be–in a very few turns of the stirring stick
the thickness of the layers goes from centimeters to Ångströms, and the result
is irreversibly pink.

Understanding the distinction between evolution of individual trajectories
and the evolution of the densities of trajectories is key to understanding sta-
tistical mechanics–this is the conceptual basis of the second law of thermody-
namics, and the origin of irreversibility of the arrow of time for deterministic
systems with time-reversible equations of motion: reversibility is attainable for
distributions whose measure in the space of density functions goes exponen-
tially to zero with time.

By going to a description in terms of the asymptotic time evolution oper-
ators we give up tracking individual trajectories for long times, but trade the
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uncontrollable trajectories in for a powerful description of the asymptotic tra-
jectory densities. This will enable us, for example, to give exact formulas for
transport coefficients such as the diffusion constants without any probabilis-chapter 23

tic assumptions. The classical Boltzmann equation for evolution of 1-particle
density is based on stosszahlansatz, neglect of particle correlations prior to, or
after a 2-particle collision. It is a very good approximate description of dilute
gas dynamics, but a difficult starting point for inclusion of systematic correc-
tions. In the theory developed here, no correlations are neglected - they are all
included in the cycle averaging formulas such as the cycle expansion for the
diffusion constant 2dD = limT→∞

〈
x(T )2

〉
/T of a particle diffusing chaotically

across a spatially-periodic array,section 23.1
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where n̂p is a translation along one period of a spatially periodic ‘runaway’
trajectory p. Such formulas are exact; the issue in their applications is what
are the most effective schemes of estimating the infinite cycle sums required
for their evaluation. Unlike most statistical mechanics, here there are no phe-
nomenological macroscopic parameters; quantities such as transport coeffi-
cients are calculable to any desired accuracy from the microscopic dynamics.

A century ago it seemed reasonable to assume that statistical mechanics ap-
plies only to systems with very many degrees of freedom. More recent is the
realization that much of statistical mechanics follows from chaotic dynamics,
and already at the level of a few degrees of freedom the evolution of densities
is irreversible. Furthermore, the theory that we shall develop here general-
izes notions of ‘measure’ and ‘averaging’ to systems far from equilibrium, and
transports us into regions hitherto inaccessible with the tools of equilibrium
statistical mechanics.

The concepts of equilibrium statistical mechanics do help us, however, to
understand the ways in which the simple-minded periodic orbit theory falters.
A non-hyperbolicity of the dynamics manifests itself in power-law correlations
and even ‘phase transitions.’chapter 22

1.8 Chaos: what is it good for?

With initial data accuracy δx = |δx(0)| and system size L, a trajectory is pre-
dictable only up to the finite Lyapunov time (1.1), T Lyap ≈ λ−1 ln |L/δx| . Be-
yond that, chaos rules. And so the most successful applications of ‘chaos the-
ory’ have so far been to problems where observation time is much longer than
a typical ‘turnover’ time, such as statistical mechanics, quantum mechanics,
and questions of long term stability in celestial mechanics, where the notion of
tracking accurately a given state of the system is nonsensical.

So what is chaos good for? Transport! Though superficially indistinguish-
able from the probabilistic random walk diffusion, in low dimensional settings
the deterministic diffusion is quite recognizable, through the fractal depen-
dence of the diffusion constant on the system parameters, and perhaps through
non-Gaussion relaxation to equilibrium (non-vanishing Burnett coefficients).
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Fig. 1.14 (a) Washboard mean velocity, (b)
cold atom lattice diffusion, and (c) AFM tip
drag force. (Y. Lan)

Several tabletop experiments that could measure transport on macroscopic
scales are sketched in Fig. 1.14 (each a tabletop, but an expensive tabletop).
Figure 1.14 (a) depicts a ‘slanted washboard;’ a particle in a gravity field bounc-
ing down the washboard, losing some energy at each bounce, or a charged par-
ticle in a constant electric field trickling across a periodic condensed-matter
device. The interplay between chaotic dynamics and energy loss results in
a terminal mean velocity/conductance, a function of the washboard slant or
external electric field that the periodic theory can predict accurately. Fig-
ure 1.14 (b) depicts a ‘cold atom lattice’ of very accurate spatial periodicity,
with a dilute cloud of atoms placed onto a standing wave established by strong
laser fields. Interaction of gravity with gentle time-periodic jiggling of the EM
fields induces a diffusion of the atomic cloud, with a diffusion constant pre-
dicted by the periodic orbit theory. Figure 1.14 (c) depicts a tip of an atomic
force microscope (AFM) bouncing against a periodic atomic surface moving
at a constant velocity. The frictional drag experienced is the interplay of the
chaotic bouncing of the tip and the energy loss at each tip/surface collision,
accurately predicted by the periodic orbit theory. None of these experiments ChaosBook.org/projects

have actually been carried out, (save for some numerical experimentation), but
are within reach of what can be measured today.

Given microscopic dynamics, periodic orbit theory predicts observable macro-
scopic transport quantities such as the washboard mean velocity, cold atom lat-
tice diffusion constant, and AFM tip drag force. But the experimental proposal
is sexier than that, and goes into the heart of dynamical systems theory.

Smale 1960s theory of the hyperbolic structure of the non-wandering set
(AKA ‘horseshoe’) was motivated by his ‘structural stability’ conjecture, which remark A.1
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- in non-technical terms - asserts that all trajectories of a chaotic dynamical
system deform smoothly under small variations of system parameters.

Why this cannot be true for a system like the washboard in Fig. 1.14 (a) is
easy to see for a cyclist. Take a trajectory which barely grazes the tip of one
of the groves. An arbitrarily small change in the washboard slope can result in
loss of this collision, change a forward scattering into a backward scattering,
and lead to a discontinuous contribution to the mean velocity. You might hold
out hope that such events are rare and average out, but not so - a loss of a
short cycle leads to a significant change in the cycle-expansion formula for a
transport coefficient, such as (1.18).

That the structural stability conjecture turned out to be badly wrong is, how-
ever, not a blow for chaotic dynamics. Quite to the contrary, it is actuallysection 11.3

a virtue, perhaps the most dramatic experimentally measurable prediction of
chaotic dynamics. As long as microscopic periodicity is exact, the prediction is
counterintuitive for a physicist - transport coefficients are not smooth functionssection 23.2

of system parameters, rather they are non-monotonic, nowhere differentiable
functions. Conversely, if the macroscopic measurement yields a smooth depen-
dence of the transport on system parameters, the periodicity of the microscopic
lattice is degraded by impurities, and probabilistic assumptions of traditional
statistical mechanics apply. So the proposal is to –by measuring macroscopic
transport– conductance, diffusion, drag –observe determinism on nanoscales,
and –for example– determine whether an atomic surface is clean.chapter ??

The signatures of deterministic chaos are even more baffling to an engineer:
a small increase of pressure across a pipe exhibiting turbulent flow does not
necessarily lead to an increase in the mean velocity; mean velocity dependence
on pressure drop across the pipe is also a fractal function.

Is this in contradiction with the traditional statistical mechanics? No - deter-
ministic chaos predictions are valid in settings where a few degrees of freedom
are important, and chaotic motion time and space scales are commensurate
with the external driving and spatial scales. Further degrees of freedom act as
noise that smoothes out the above fractal effects and restores smooth functional
dependence of transport coefficients on external parameters.

1.9 What is not in ChaosBook

This book offers everyman a breach into a domain hitherto reputed unreach-
able, a domain traditionally traversed only by mathematical physicists and
mathematicians. What distinguishes it from mathematics is the insistence
on computability and numerical convergence of methods offered. A rigorous
proof, the end of the story as far as a mathematician is concerned, might state
that in a given setting, for times in excess of 1032 years, turbulent dynamics
settles onto an attractor of dimension less than 600. Such a theorem is of a
little use to an honest, hard-working plumber, especially if her hands-on expe-
rience is that within the span of a few typical ‘turnaround’ times the dynamics
seems to settle on a (transient?) attractor of dimension less than 3. If rigor,
magic, fractals or brains is your thing, read Remark 1.4 and beyond.

So, no proofs! but lot of hands-on plumbing ahead.
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