around the Nagata EQ2 upper branch. This is procedure is too special-case and kludgy to put in channelflow documentation. It is a horrific mixture of general-purpose channnnelflow utilities, specialized channelflow programs, Unix utilities, and bash shell programming.
I'll assume you have the Nagata upper-branch eqb EQ2.ff and the eigenfunctions of the complex instability, ef2.ff and ef3.ff. These fields are actually real and imaginary parts of the complex eigenfunctions, and the evolution of perturbations goes like
The eigenfunctions are non-orthogonal so the first thing to do is to make an orthogonal basis from them. Throw in the next leading S-symmetric eigenfunctions for good measure.
makebasis ef2 ef3 ef11 ef12
The produces e0, e1, e2, e3. The first two will span ef2, ef3.
Construct perturbations of the form
where Λ = exp(Re λ * 2 π / Im λ) = 6.7549 is the expansion multiplier for one period of oscillation. This will produce trajectories uniformly distributed under the iterated unstable oscillation.
I set ε = 1e-05 and started with N=16, and named my initial condition fields after the digits in Λ^(n/N) (using digits rather than integer labels will scale if I later increase N to 32 or 64). E.g Λ^(n/N) for n/N = 1/16 is 1.1268, and for 2/16 is 12696.
addfields 1 EQ2.ff 1.1267e-05 e0.ff eq2_11268e0.ff addfields 1 EQ2.ff 1.2696e-05 e0.ff eq2_12696e0.ff ...
Integrate these 16 fields for a few hundred time units and save.
couette -T0 0 -T1 400 -o data-11268 eq2_11268e0.ff couette -T0 0 -T1 400 -o data-12696 eq2_12696e0.ff ...
Instead of typing each of these out, you can use a bash for-loop,
for i in eq2_*e0.ff ; do tag=${i#eq2_} ; couette -T0 0 -T1 400 -o data-${tag%.e0.ff} $i ; done
The {i#data-} ; eq2poincare.x -d data-{tag} -T0 0 -T1 400 etx etz e0 e1 EQ2.ff; done
The files in directory section-pi4 will be ordered in increasing distance along the unstable manifold.
gibson@tansen$ ls section-foo-pi4/ crossingtimes-a.asc uM0d.ff uM1g.ff uM3a.ff uM4d.ff uP0h.ff uP2b.ff uP3e.ff crossingtimes-b.asc uM0e.ff uM1h.ff uM3b.ff uM4e.ff uP0i.ff uP2c.ff uP3f.ff crossingtimes-c.asc uM0f.ff uM1i.ff uM3c.ff uM4f.ff uP1a.ff uP2d.ff uP3g.ff crossingtimes-d.asc uM0g.ff uM2a.ff uM3d.ff uM4g.ff uP1b.ff uP2e.ff uP3h.ff crossingtimes-e.asc uM0h.ff uM2b.ff uM3e.ff uM4h.ff uP1c.ff uP2f.ff uP4a.ff crossingtimes-f.asc uM0i.ff uM2c.ff uM3f.ff uP0a.ff uP1d.ff uP2g.ff uP4b.ff crossingtimes-g.asc uM1a.ff uM2d.ff uM3g.ff uP0b.ff uP1e.ff uP2h.ff uP4c.ff crossingtimes-h.asc uM1b.ff uM2e.ff uM3h.ff uP0c.ff uP1f.ff uP2i.ff uP4d.ff crossingtimes-i.asc uM1c.ff uM2f.ff uM3i.ff uP0d.ff uP1g.ff uP3a.ff uP4e.ff uM0a.ff uM1d.ff uM2g.ff uM4a.ff uP0e.ff uP1h.ff uP3b.ff uP4f.ff uM0b.ff uM1e.ff uM2h.ff uM4b.ff uP0f.ff uP1i.ff uP3c.ff uP4g.ff uM0c.ff uM1f.ff uM2i.ff uM4c.ff uP0g.ff uP2a.ff uP3d.ff uP4h.ff
etc.
Next we project the crossing points of the Poincare section using the channelflow projectfields
utility.
projectfields -b basis-EQ2ef/ -Nb 4 -or EQ2.ff -o portrait-pi4 section-pi4/*.ff
The above command assumes you have put the basis vectors e0,e1,e2,e3 into a directory named basis-EQ2ef/; if not you might use '-b .' instead.
This creates a new directory 'portrait-pi4' containing ASCII files uM0a.asc, uM0b.asc, …, each of which contains four numbers corresponding to the projection of the fields in uM0a.ff, etc onto the four basis vectors e0,e1,e2,e3. E.g.
gibson@tansen$ cat portrait-pi4/uM0a.asc % e0 e1 e2 e3 -9.6755005579877134e-06 9.6754650183359171e-06 3.8296888337351566e-10 -2.5429703558485441e-08
It's easier to plot this data if it's in one file and in the right order. To do that, we strip out the
comments with grep
and save the results to two files.
gibson@tansen$ grep -v -h ^% portrait-foo-pi4/uM*.asc > uM.asc gibson@tansen$ grep -v -h ^% portrait-foo-pi4/uP*.asc > uP.asc
That produces two files of incoming/outgoing crossings that can be plotted with matlab or whatever.