User Tools

Site Tools


gibson:teaching:fall-2016:math753:finitediff

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2016:math753:finitediff [2016/11/17 06:40]
gibson
gibson:teaching:fall-2016:math753:finitediff [2016/12/12 18:49]
gibson
Line 5: Line 5:
 === First derivative df/dx === === First derivative df/dx ===
  
-Given a set of evenly space gridpoints $x_1, x_2, \ldots$, where $x_i = x_1 + (i-1) h$, and a function evaluated at the gridpoints $f(x_1), ​f(x_2), \ldots$, we can approximate the first derivative of $f$ at the gridpoints several ways+Given a set of evenly space gridpoints $x_1, x_2, \ldots$, where $x_i = x_1 + (i-1) h$, and a function ​$y(x)$ ​evaluated at the gridpoints $y_1 = y(x_1), ​y_2 = y(x_2), \ldots$, we can approximate the first derivative of $y(x)$ at the gridpoints several ways
  
 **One-sided finite differencing for the first derivative**,​ rightwards **One-sided finite differencing for the first derivative**,​ rightwards
 \begin{equation*} \begin{equation*}
-\frac{df}{dx}(x_i) = \frac{x_{i+1} - x_{i}}{h} + O(h)+\frac{dy}{dx}(x_i) = \frac{y_{i+1} - y_{i}}{h} + O(h)
 \end{equation*} \end{equation*}
  
 **One-sided finite differencing for the first derivative**,​ leftwards **One-sided finite differencing for the first derivative**,​ leftwards
 \begin{equation*} \begin{equation*}
-\frac{df}{dx}(x_i) = \frac{x_{i} - x_{i-1}}{h} + O(h)+\frac{dy}{dx}(x_i) = \frac{y_{i} - y_{i-1}}{h} + O(h)
 \end{equation*} \end{equation*}
  
 **Centered finite differencing for the first derivative** **Centered finite differencing for the first derivative**
 \begin{equation*} \begin{equation*}
-\frac{df}{dx}(x_i) = \frac{x_{i+1} - x_{i-1}}{2h} + O(h^2)+\frac{dy}{dx}(x_i) = \frac{y_{i+1} - y_{i-1}}{2h} + O(h^2)
 \end{equation*} \end{equation*}
  
Line 26: Line 26:
 === Second derivative === === Second derivative ===
  
-To approximate the second derivative $d^2f/dx^2$, we use the +To approximate the second derivative $d^2y/dx^2$, we use the 
  
 **Centered finite differencing for the second derivative** **Centered finite differencing for the second derivative**
 \begin{equation*} \begin{equation*}
-\frac{d^2f}{dx^2}(x_i) = \frac{x_{i+1} - 2 x_i x_{i-1}}{h^2} + O(h^2)+\frac{d^2y}{dx^2}(x_i) = \frac{y_{i+1} - 2 y_i y_{i-1}}{h^2} + O(h^2)
 \end{equation*} \end{equation*}
  
Line 41: Line 41:
  
   * [[https://​en.wikipedia.org/​wiki/​Finite_difference|Finite Difference]] (wikipedia)   * [[https://​en.wikipedia.org/​wiki/​Finite_difference|Finite Difference]] (wikipedia)
-  * [[http://​www.rsmas.miami.edu/​personal/​miskandarani/​Courses/​MSC321/​lectfiniteDifference.pdf| (Mohamed Iskandarani,​ University of Miami))+  * [[http://​www.rsmas.miami.edu/​personal/​miskandarani/​Courses/​MSC321/​lectfiniteDifference.pdf| ​Finite Differences lecture]] ​(Mohamed Iskandarani,​ University of Miami)
  
gibson/teaching/fall-2016/math753/finitediff.txt ยท Last modified: 2016/12/12 18:49 by gibson