User Tools

Site Tools


gibson:teaching:fall-2012:math445:pf1

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2012:math445:pf1 [2012/12/05 11:17]
gibson
gibson:teaching:fall-2012:math445:pf1 [2012/12/05 13:23] (current)
gibson
Line 8: Line 8:
 4. Suppose matrix //A// has //M// rows and //N// cols. Set //B// to //A// with its columns in reversed order. 4. Suppose matrix //A// has //M// rows and //N// cols. Set //B// to //A// with its columns in reversed order.
  
-5. Solve system of equations+5. Solve the system of equations
  
 <​code>​ <​code>​
Line 40: Line 40:
 network of websites. network of websites.
  
-  <network-of-links figure here> +{{:​gibson:​teaching:​fall-2012:​math445:​network2.png?​direct&​300}}
  
 15. Write Matlab code that converts the connectivity matrix //C// to a  15. Write Matlab code that converts the connectivity matrix //C// to a 
Line 48: Line 47:
  
  
-16. Given //T//, write Matlab code that computes the vector ​//x// of  +16. Given //T//, write Matlab code that computes the vector ​$xof  
-probabilities ​//​x(j)// ​that you'll end up at website ​//j// after a +probabilities ​$x_j$ that you'll end up at website ​$jafter a 
 long night of random websurfing. ​ long night of random websurfing. ​
  
  
-17. Write an equation for y as a function of x (log-linear,​ etc) for +17. Write an equation for //y// as a function of //x// for 
-the following data plot+the following data plot. Bonus: express exponential functions  
 +as powers of //e// rather than powers of 10. Use $e^{2.3}\approx 10$  
 +to convert between the two.    
 + 
 + ​{{:​gibson:​teaching:​fall-2012:​math445:​fig1.png?​direct&​300}}
  
-  <data plot goes here> 
  
  
 18. How would you graph the function $y(x) = x^c$, in a way that highlights 18. How would you graph the function $y(x) = x^c$, in a way that highlights
-this functional relationship? ​+this functional relationship? I.e. given vectors $x$ and $y$ satisfying 
 +$y_i = x_i^c$, what Matlab command should you use to plot $y$ versus $x$?
  
  
Line 70: Line 73:
  
 21. Write an anonymous function that, for an input vector $x = [x_1, ~x_2]$ 21. Write an anonymous function that, for an input vector $x = [x_1, ~x_2]$
-returns the output vector $f(x) = [4 x_1 x_2, ~\sin(x_1) cos(x_2)]$+returns the output vector $f(x) = [4 x_1 x_2, ~\sin(x_1) ​\cos(x_2)]$
  
 22.  Convert the following 2nd order ODE to a 1st order system of ODE in  22.  Convert the following 2nd order ODE to a 1st order system of ODE in 
Line 88: Line 91:
 <​latex>​ dy/dt = v_y </​latex>​ <​latex>​ dy/dt = v_y </​latex>​
  
-<​latex>​ d v_y/dt = -g - \mu v_y^2 </​latex>​+<​latex>​ d v_y/dt = -g - \mu v_y |v_y| </​latex>​
  
 where $g = 9.81, ~\mu =0.35$, $y$ represents the vertical position, and where $g = 9.81, ~\mu =0.35$, $y$ represents the vertical position, and
 $v_y$ represents the vertical velocity. Represent the two free variables $v_y$ represents the vertical velocity. Represent the two free variables
-with the vector $x = [y, v_y]$ and reexpress the two equations above as +with the vector $x = [y, ~v_y]$ and reexpress the two equations above as 
-an ODE system ​+an ODE system ​of the form 
 + 
 +$dx/dt = f(x)$ 
  
-$dx/dt = [dx_1/dt, dx_2/​dt] ​f(x)$+Note that both sides of this equation are vectors: ​$dx/dt = [dx_1/​dt, ​~dx_2/dt]$ and  
 +$f(x) = [f_1(x_1, x_2), ~f_2(x_1, x_2)]$. Your job is to find the functions $f_1$ and $f_2$.
  
-Write an anonymous function in Matlab that computes $dx/dt = f(x)$ given a vector $x$, and +Write an anonymous function in Matlab that computes $dx/dt = f(x)$ for an input vector $x$,  
-then use //ode45// to integrate ​the system from $t=0$ to $t=100$+and then use //ode45// to integrate ​this system from $t=0$ to $t=100$
 from the initial conditions $x(0) = [y(0), ~v_y(0)] = [0, 0]$. from the initial conditions $x(0) = [y(0), ~v_y(0)] = [0, 0]$.
  
Line 111: Line 117:
  
 <​latex>​ <​latex>​
-y_i = \sum_{j=1} A_{ij} x_j+y_i = \sum_{j=1}^N A_{ij} x_j
 </​latex>​ </​latex>​
  
-for each component $y_i$ of the //M// dimensional vector $y$. But don't that  +for each component $y_i$ of the //M// dimensional vector $y$. But don'​t ​code that  
-formula directly! Instead start your code with+formula directly! Instead start your function ​with
  
 <​code>​ <​code>​
Line 122: Line 128:
 </​code>​ </​code>​
  
-and write the matrix-vector multiplication as a loop over the $Knonzero elements +and write the matrix-vector multiplication as a loop over the K nonzero elements 
-of $A$+of A. 
gibson/teaching/fall-2012/math445/pf1.1354735060.txt.gz · Last modified: 2012/12/05 11:17 by gibson