1. Read Chapter 12 of the Moler text, and think through how the provided code updates the very first and last cells in the grid. What specific line or lines of code are responsible for these “boundary conditions”? Do the boundary conditions make the domain effectively infinite? Why or why not?
2. Write your own Game of Life code as a Matlab function, following these steps.
Open the file mylife.m
and start enter these lines.
function mylife(T) if nargin == 0; T = 500; end
Look up nargin
in the help menu. What is the purpose of this part
of the code?
3. Next set up the initial layout for the game of life on a a 50 x 50 grid. This initial condition leads to some pretty interesting behavior!
N=50; X=sparse(N,N); N2 = N/2; X(N2-1,N2-1)=1; X(N2-1,N2)=1; X(N2,N2-1)=1; X(N2,N2+1)=1; X(N2+1,N2+1)=1; X(N2+1,N2+2)=1;
4. Initialize to zero a variable to count the discrete time t
and
then start a loop that stops after T
iterations
5. At each time step, plot a marker for each live cell. There are two alternatives for this code.
The spy
function will plot a marker for each nonzero element of a sparse
matrix, but it's not very flexible with the marker symbols. This will plot
blue squares
spy(X,'bs');
A more complicated but ultimately more satisfying way to plot the live cells
uses the find
command, which returns a list of the i,j
coordinates
and the x
values of nonzero elements of a sparse matrix. This code will
plot a solid blue square at each live cell.
[i,j,x] = find(X); plot(j,i,'bs','MarkerEdgeColor','b','MarkerFaceColor','b','MarkerSize',4); axis image
Use this latter code unless you can't get your Game of Life code to run correctly.
In that case, use the simpler spy
plotting code to debug, and then replace it
with find
and plot
once your code is running correctly.
axis([0.5, n+0.5, 0.5, n+.5]); xlabel('j') ylabel('i') pause(0.25) title(strcat('t=',int2str(t)));
Please briefly describe what each line of your code does. Use the help
function or menu if you're not sure.
You may want to change the value of MarkerSize
to make your plots look
better, or change the argument of the pause
function to make the code
run faster or slower. If you use just pause
, with no arguments, Matlab
will pause until you to hit the return key.
6. Implement the code given in the Moler text that will update the X
matrix for the next time, using boundary conditions that repeat the border
cells. Later we will change the boundary conditions to enforce zeros (dead cells)
on all of the boundaries.
7. You should now be able to run the code. If not debug it so that you
can. Save this code as mylife.m
to turn in.
8. Copy that code to mylife2.m
and make further modifications
on that for problems 8-13. Add a few lines of code that stop the time
stepping if every cell dies. (Hint: what would max(max(X))
return?)
What does the command break
do?)
9. Add a few lines of code that stop the time stepping if there are no
changes between successive time steps. (Hint: you'll need to store the
live cells an Xprev
sparse matrix before you update them. Look up
the nnz
function in help, and use it to compute the number of different
elements between X
and Xprev
.)
10. The blue circles get a little boring after a while. Let's
color-code the live cells based on how many of their neighbors were
alive at the previous time. Calculate two sparse matrices X2, X3,
which are nonzero wherever X
is live and came from 2 or 3 live
neighbors. Then plot all the nonzero entries of X2 with red and X3
with blue. (Hint: use hold on
to overlay the different colored
plots and hold off
to start a new plot at the next time.)
11. Change the red and blue colors above to orange and purple.
(Hint: look up ColorSpec
in the help menu). What is the Matlab
code for this?
12. Experiment with changing the initial condition slightly. Try several small changes. Do small initial changes have small or large effects on the long-term behavior of the system?
13. The following code will kill anything on a certain boundary
X(N,:) = 0;
Kill everything on each of the four boundaries after updating the live cells. Go back to the original initial condition and rerun with the revised boundary conditions. Does that have any effect on the long-term behavior of the system?
14. (bonus) Search the web for interesting initial conditions for the Game
of Life, and figure out an easy way to store an initial condition in a file
and load it into your mylife
code.
Turn in your completed code mylife.m
and mylife2.m
codes and the answers to the above questions.