User Tools

Site Tools


docs:math:symmetry

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
docs:math:symmetry [2009/05/04 06:03]
predrag bunch of minor edits. Added links to references - nothing substantial
docs:math:symmetry [2014/12/04 11:46]
gibson
Line 3: Line 3:
 The symmetry group of 3D fields in channel geometries is generated by  The symmetry group of 3D fields in channel geometries is generated by 
  
-<​latex>​ $ \begin{align*}+\begin{eqnarray*}
   [u,​v,​w](x,​y,​z) &​\rightarrow [-u, v, w](-x,y,z) \\   [u,​v,​w](x,​y,​z) &​\rightarrow [-u, v, w](-x,y,z) \\
   [u,​v,​w](x,​y,​z) &​\rightarrow [ u, -v, w](x,-y,z) \\   [u,​v,​w](x,​y,​z) &​\rightarrow [ u, -v, w](x,-y,z) \\
Line 9: Line 9:
   [u,​v,​w](x,​y,​z) &​\rightarrow [-u,​-v,​-w](x,​y,​z) \\   [u,​v,​w](x,​y,​z) &​\rightarrow [-u,​-v,​-w](x,​y,​z) \\
   [u,​v,​w](x,​y,​z) &​\rightarrow [ u, v, w](x+\ell_x,​ y, z+\ell_z) ​   [u,​v,​w](x,​y,​z) &​\rightarrow [ u, v, w](x+\ell_x,​ y, z+\ell_z) ​
-\end{align*} $ </​latex>​+\end{eqnarray*}
  
 "​Channel geometry"​ means a domain that is periodic or infinite in //x// and //z// "​Channel geometry"​ means a domain that is periodic or infinite in //x// and //z//
Line 17: Line 17:
 and specific boundary conditions, are subgroups of the group and specific boundary conditions, are subgroups of the group
 generated by the above symmetries. generated by the above symmetries.
- 
 ====== Symmetry of plane Couette flow======= ====== Symmetry of plane Couette flow=======
  
-For the full description of 57 isotropy subgroups of plane Couette, see J. Halcrow, J. F. Gibson, and P. Cvitanović,​+For the full description of 67 isotropy subgroups of plane Couette, see J. Halcrow, J. F. Gibson, and P. Cvitanović,​
 //​Equilibrium and traveling-wave solutions of plane Couette flow//, [[http://​arxiv.org/​abs/​0808.3375|arXiv:​0808.3375]],​ J. Fluid Mech. (to appear, 2009), and [[http://​chaosbook.org/​projects/​Halcrow/​thesis.pdf|J. Halcrow, "​Charting the state space of plane Couette flow: Equilibria, relative equilibria, and heteroclinic connections"​]] (Georgia Tech Ph.D. thesis, Aug 2008). Here are some highlights. //​Equilibrium and traveling-wave solutions of plane Couette flow//, [[http://​arxiv.org/​abs/​0808.3375|arXiv:​0808.3375]],​ J. Fluid Mech. (to appear, 2009), and [[http://​chaosbook.org/​projects/​Halcrow/​thesis.pdf|J. Halcrow, "​Charting the state space of plane Couette flow: Equilibria, relative equilibria, and heteroclinic connections"​]] (Georgia Tech Ph.D. thesis, Aug 2008). Here are some highlights.
  
Line 27: Line 26:
 Plane Couette flow is invariant under the following symmetries Plane Couette flow is invariant under the following symmetries
  
-<​latex>​ +\begin{eqnarray*}
- ​$ ​\begin{align*}+
 \sigma_x ​   \,       ​[u,​v,​w](x,​y,​z) &= [-u,​-v,​w](-x,​-y,​z) \\ \sigma_x ​   \,       ​[u,​v,​w](x,​y,​z) &= [-u,​-v,​w](-x,​-y,​z) \\
 \sigma_z ​   \,       ​[u,​v,​w](x,​y,​z) &= [u, v,​-w](x,​y,​-z) ​ \\ \sigma_z ​   \,       ​[u,​v,​w](x,​y,​z) &= [u, v,​-w](x,​y,​-z) ​ \\
 \tau(\ell_x,​ \ell_z) [u,​v,​w](x,​y,​z) &= [u, v,​-w](x+\ell_x,​ y, z+\ell_z) ​ \\ \tau(\ell_x,​ \ell_z) [u,​v,​w](x,​y,​z) &= [u, v,​-w](x+\ell_x,​ y, z+\ell_z) ​ \\
-\end{align*}  +\end{eqnarray*}
-$  +
-</​latex>​+
  
 That is, if f^t(u) is the time-t map of plane Couette flow, then That is, if f^t(u) is the time-t map of plane Couette flow, then
  
-<​latex>​+\begin{eqnarray*}
  f^t(s u) = s f^t(u) ​  f^t(s u) = s f^t(u) ​
-</​latex>​+\end{eqnarray*}
  
 for any s in group G generated by <​latex>​ \{\sigma_x, \sigma_z, ​ \tau(\ell_x,​ \ell_z)\}. </​latex>​ for any s in group G generated by <​latex>​ \{\sigma_x, \sigma_z, ​ \tau(\ell_x,​ \ell_z)\}. </​latex>​
Line 46: Line 42:
 Let u(t) be a solution of Navier Stokes with initial condition u(0), Let u(t) be a solution of Navier Stokes with initial condition u(0),
  
-<​latex>​+\begin{eqnarray*}
   u(t) = f^t(u(0))   u(t) = f^t(u(0))
-</​latex>​+\end{eqnarray*}
  
 then then
  
-<​latex>​+\begin{eqnarray*}
   s u(t) = s f^t(u(0)) = f^t(s u(0))   s u(t) = s f^t(u(0)) = f^t(s u(0))
-</​latex>​+\end{eqnarray*}
  
 is a solution of Navier-Stokes with initial condition s u(0). is a solution of Navier-Stokes with initial condition s u(0).
Line 63: Line 59:
 Suppose //u(0)// is invariant under a symmetry //s// in //G//, i.e.  Suppose //u(0)// is invariant under a symmetry //s// in //G//, i.e. 
  
-<​latex>​+\begin{eqnarray*}
   s u(0) = u(0)   s u(0) = u(0)
-</​latex>​+\end{eqnarray*}
  
 Then //u(t)// satisfies that symmetry for all //t//, since Then //u(t)// satisfies that symmetry for all //t//, since
  
-<​latex>​+\begin{eqnarray*}
   s u(t) = s f^t(u(0)) = f^t(s u(0)) = f^t(u(0)) = u(t)   s u(t) = s f^t(u(0)) = f^t(s u(0)) = f^t(u(0)) = u(t)
-</​latex>​+\end{eqnarray*}
  
 The set of all symmetries //s// in //G// satisfied by u forms a subgroup //H ⊂ G//,  The set of all symmetries //s// in //G// satisfied by u forms a subgroup //H ⊂ G//, 
Line 82: Line 78:
 The isotropy group most known equilibria and periodic orbits of plane Couette flow is  The isotropy group most known equilibria and periodic orbits of plane Couette flow is 
  
-<​latex>​+\begin{eqnarray*}
   S = \{1, s_1, s_2, s_3 \}   S = \{1, s_1, s_2, s_3 \}
-</​latex>​+\end{eqnarray*}
  
 where where
  
-<​latex>​ +\begin{eqnarray*}
- ​$ ​\begin{align*}+
   s_1 \, [u, v, w](x,y,z) &= [u, v, -w](x+L_x/​2,​ y, -z) \\   s_1 \, [u, v, w](x,y,z) &= [u, v, -w](x+L_x/​2,​ y, -z) \\
   s_2 \, [u, v, w](x,y,z) &= [-u, -v, w](-x+L_x/​2,​-y,​z+L_z/​2) \\   s_2 \, [u, v, w](x,y,z) &= [-u, -v, w](-x+L_x/​2,​-y,​z+L_z/​2) \\
   s_3 \, [u, v, w](x,y,z) &= [-u,​-v,​-w](-x,​ -y, -z+L_z/2) \\   s_3 \, [u, v, w](x,y,z) &= [-u,​-v,​-w](-x,​ -y, -z+L_z/2) \\
-\end{align*} +\end{eqnarray*}
-$  +
-</​latex>​ +
 It is helpful to express these symmetries in terms of //​σ<​sub>​x</​sub>,​ σ<​sub>​z</​sub>,//​ and translations. Let  It is helpful to express these symmetries in terms of //​σ<​sub>​x</​sub>,​ σ<​sub>​z</​sub>,//​ and translations. Let 
  
-<​latex>​ $ \begin{align*}+\begin{eqnarray*}
   \tau_x ​   &= \tau(L_x/2, 0) \\   \tau_x ​   &= \tau(L_x/2, 0) \\
   \tau_z ​   &= \tau(0, L_z/2) \\   \tau_z ​   &= \tau(0, L_z/2) \\
   \tau_{xz} &= \tau_x \tau_z ​   \tau_{xz} &= \tau_x \tau_z ​
-\end{align*} $ </​latex>​+\end{eqnarray*}
  
 then  then 
  
-<​latex>​ $ \begin{align*}+\begin{eqnarray*}
   S = \{1, \, \tau_x \sigma_z, \, \tau_{xz} \sigma_x, \, \tau_z \sigma_{xz} \}   S = \{1, \, \tau_x \sigma_z, \, \tau_{xz} \sigma_x, \, \tau_z \sigma_{xz} \}
-\end{align*} $ </​latex>​ +\end{eqnarray*}
 ===== Fun facts ===== ===== Fun facts =====
  
 1. If u has isotropy group S, then  1. If u has isotropy group S, then 
  
-<​latex> ​+\begin{eqnarray*}
 \tau_x u,  \, \tau_z u, \, \text{ and } \, \tau_{xz} u  \tau_x u,  \, \tau_z u, \, \text{ and } \, \tau_{xz} u 
-</​latex>​+\end{eqnarray*}
  
 also have isotropy group S. Thus for each equilibrium or periodic orbit with isotropy group S, there are four half-box shifted partners. also have isotropy group S. Thus for each equilibrium or periodic orbit with isotropy group S, there are four half-box shifted partners.
Line 132: Line 123:
 relative periodic orbits only of the form relative periodic orbits only of the form
  
-<​latex>​+\begin{eqnarray*}
   \tau f^t(u) - u = 0 \text{ for } \tau \in T = \{1, \, \tau_x, \, \tau_z, \, \tau_{xz} \}   \tau f^t(u) - u = 0 \text{ for } \tau \in T = \{1, \, \tau_x, \, \tau_z, \, \tau_{xz} \}
-</​latex>​+\end{eqnarray*} 
 ===== Isotropy groups and invariant solutions ===== ===== Isotropy groups and invariant solutions =====
  
Line 146: Line 138:
 choices for the symmetry //σ// in  choices for the symmetry //σ// in 
  
-<​latex>​+\begin{eqnarray*}
    ​\sigma f^t u - u = 0    ​\sigma f^t u - u = 0
-</​latex>​ +\end{eqnarray*}
 namely, <​latex>​ \sigma = 1, \tau_x, \, \tau_z, \, \text{ or } \tau_{xz} </​latex>,​ rather ​ namely, <​latex>​ \sigma = 1, \tau_x, \, \tau_z, \, \text{ or } \tau_{xz} </​latex>,​ rather ​
 than the continuum <​latex>​ \tau(\ell_x,​ \ell_z) </​latex>​. than the continuum <​latex>​ \tau(\ell_x,​ \ell_z) </​latex>​.
Line 156: Line 147:
 close recurrence within a trajectory u(t) by close recurrence within a trajectory u(t) by
  
-<​latex>​ $ \begin{align*}+\begin{eqnarray*}
   r(t,T) &= min_{\tau} \| \sigma f^T u(t) - u(t) \| \\   r(t,T) &= min_{\tau} \| \sigma f^T u(t) - u(t) \| \\
          &​= min_{\tau} \| \sigma u(t+T) - u(t) \|           &​= min_{\tau} \| \sigma u(t+T) - u(t) \| 
-\end{align*} $ </​latex>​ +\end{eqnarray*} 
- +for \tau \in \{1, \, \tau_x, \, \tau_z, ​ \tau_{xz}\}$
-for <​latex> ​\tau \in \{1, \, \tau_x, \, \tau_z, ​ \tau_{xz}\}</​latex>​+
 We can compute r(t,T) from a time series of u(t) and look for places where r(t,T) << 1 for  We can compute r(t,T) from a time series of u(t) and look for places where r(t,T) << 1 for 
 stretches of t and constant T. Those will be good guesses for periodic orbits. stretches of t and constant T. Those will be good guesses for periodic orbits.
- 
- 
docs/math/symmetry.txt · Last modified: 2014/12/04 11:53 by gibson