% How to estimate pi^2/6 from N terms of series 1 + 1/2^2 + 1/3^2 + 1/4^2 + ... % Using a for-loop sum=0; N=100; for n=1:N sum = sum + 1/n^2; end sum sum = 1.6350 pi^2/6 ans = 1.6449 sum-pi^2/6 ans = -0.0100 % off by about 0.01 for N=100 terms --not so great % To try different values of number of terms, write a function % see file pisquared6.m pisquared6(100) ans = 1.6350 pisquared6(100) -pi^2/6 ans = -0.0100 pisquared6(1000) -pi^2/6 ans = -9.9950e-04 pisquared6(10000) -pi^2/6 ans = -9.9995e-05 % Even better, produce a plot of value of series versus N % See pigraph.m % Now, do the same calculations with one line of Matlab sum((1:10).^(-2)) % sum 1/n^2 over n=1 through 10 ans = 1.5498 sum((1:100).^(-2)) % sum 1/n^2 over n=1 through 100 ans = 1.6350 sum((1:100).^(-2)) - pi^2/6 ans = -0.0100 sum((1:1000).^(-2)) - pi^2/6 ans = -9.9950e-04 sum((1:10000).^(-2)) - pi^2/6 ans = -9.9995e-05 sum((1:100000).^(-2)) - pi^2/6 ans = -9.9999e-06