User Tools

Site Tools


gibson:teaching:fall-2015:iam961:iam961-hw2

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
gibson:teaching:fall-2015:iam961:iam961-hw2 [2015/09/29 13:38]
gibson
gibson:teaching:fall-2015:iam961:iam961-hw2 [2015/09/30 08:58] (current)
gibson
Line 13: Line 13:
 of notation than any kind of deep proof. It should take about three lines. of notation than any kind of deep proof. It should take about three lines.
  
-**Problem 3:** Given the following 2 x 2 matrix $A$ and 2-vector $x$, +**Problem 3:** Let $A$ be an m x n matrix with SVD $A = U\ \Sigma V$. By applying the results of problem 2 to the matrices $U$ and $\Sigma V^*$, show that  
 + 
 +\begin{eqnarray*} 
 +A = \sum_{j=1}^p \sigma_j u_j v^*_j 
 +\end{eqnarray*} 
 +where $p = \min\{m,​n\}$. For simplicity you can assume $m \geq n$ so that $p=n$. Note that if $r \leq p$ is the number of nonzero singular values (or equivalently,​ the rank of $A$), then clearly one can also write the sum going to just $r$ instead of $p$. 
 + 
 +**Problem 4:** Continuing from problem 3, let  
 +\begin{eqnarray*} 
 +A_{\nu} = \sum_{j=1}^{\nu} \sigma_j u_j v^*_j 
 +\end{eqnarray*} 
 +where $\nu \leq p = \min\{m,​n\}$. Show that $A_{\nu}$ is the closest rank-$\nu$ approximation to $A$ in the 2-norm, i.e. that 
 + 
 +\begin{eqnarray*} 
 +\| A - A_{\nu} \|_2 = \inf_{ B \in \mathbb{C}^{m\times n}, rank{B} \leq \nu}  \| A-B \|_2 = \sigma_{\nu+1} 
 +\end{eqnarray*} 
 +(where $\sigma_{\nu+1} = 0$ if $\nu = p$). This is Theorem 5.8 in Trefethen & Bau. You can follow that proof, just write it out in your own words, improving on presentation & argument where you can. 
 + 
 +**Problem 5:** Given the following 2 x 2 matrix $A$ and 2-vector $x$, 
 <​code>​ <​code>​
 A = A =
Line 36: Line 54:
    ​1.00000000000000    ​1.00000000000000
 </​code>​ </​code>​
-Now figure out where $y=Ax$ will be on the $u_1, u_2$ plot **geometrically* using the SVD, as follows+Now figure out where $y=Ax$ will be on the $u_1, u_2$ plot **geometrically** using the SVD, as follows
 \begin{eqnarray*} \begin{eqnarray*}
 y = Ax = U \Sigma V^\dagger x = u_1 \sigma_1 v_1^\dagger x + u_2 \sigma_2 v_2^\dagger x y = Ax = U \Sigma V^\dagger x = u_1 \sigma_1 v_1^\dagger x + u_2 \sigma_2 v_2^\dagger x
gibson/teaching/fall-2015/iam961/iam961-hw2.1443559087.txt.gz · Last modified: 2015/09/29 13:38 (external edit)